Part I – GENERAL

1.1 WORK INCLUDED

A. Variable Speed Packaged Pumping System

1.2 REFERENCE STANDARDS

The work in this section is subject to the requirements of applicable portions of the following standards:

A. Hydraulic Institute
B. ANSI – American National Standards Institute
C. ASTM – American Society for Testing and Materials
D. IEEE – Institute of Electrical and Electronics Engineers
E. NEMA – National Electrical Manufacturers Association
F. NEC – National Electrical Code
G. ISO – International Standards Organization
H. UL – Underwriters Laboratories, Inc.

Part 2 – PRODUCTS

2.1 VARIABLE SPEED PACKAGED PUMPING SYSTEM

A. Furnish and install a pre-fabricated and tested variable speed packaged pumping system to maintain constant water delivery pressure.

B. The packaged pump system shall be a standard product of a single pump manufacturer. The entire pump system including pumps and pump logic controller, shall be designed, built, and tested by the same manufacturer.

C. The complete packaged water booster pump system shall be certified and listed by UL (Category QCZJ – Packaged Pumping Systems) for conformance to U.S. and Canadian Standards.

D. The packaged pump system shall be ASHRAE 90.1 – 2010 compliant without the need of a remote mounted sensor. The control logic used to simulate a remote mounted sensor shall be proportional pressure control with squared or linear adaptation. An actual flow rate or calculated flow rate based on performance curves (5th order polynomial) loaded into the controller; shall be used to adjust setpoint pressure in proportional pressure control.

2.2 PUMPS

A. The pumps shall be of the in-line vertical multi-stage design.

B. The head-capacity curve shall have a steady rise in head from maximum to minimum flow within the preferred operating region. The shut-off head shall be a minimum of 20% higher than the head at the best efficiency point.

C. Small Vertical In-Line Multi-Stage Pumps (Nominal flow from 3 to 125 gallons per minute) shall have the following features:
 1. The pump impellers shall be secured directly to the pump shaft by means of a splined shaft arrangement.
 2. The suction/discharge base shall have ANSI Class 250 flange or internal pipe thread (NPT) connections as determined by the pump station manufacturer.
3. Pump Construction.
 a. Suction/discharge base, pump head, motor stool: Cast iron (Class 30)
 b. Impellers, diffuser chambers, outer sleeve: 304 Stainless Steel
 c. Shaft 316 or 431 Stainless Steel
 d. Impeller wear rings: 304 Stainless Steel
 e. Shaft journals and chamber bearings: Silicon Carbide
 f. O-rings: EPDM

Shaft couplings for motor flange sizes 184TC and smaller shall be made of cast iron or sintered steel. Shaft couplings for motor flange sizes larger than 184TC shall be made of ductile iron (ASTM 60-40-18).

Optional materials for the suction/discharge base and pump head shall be cast 316 stainless steel (ASTM CF-8M) resulting in all wetted parts of stainless steel.

4. The shaft seal shall be a balanced o-ring cartridge type with the following features:
 a. Collar, Drivers, Spring: 316 Stainless Steel
 b. Shaft Sleeve, Gland Plate: 316 Stainless Steel
 c. Stationary Ring: Silicon Carbide
 d. Rotating Ring: Silicon Carbide
 e. O-rings: EPDM

The Silicon Carbide shall be imbedded with graphite.

5. Shaft seal replacement shall be possible without removal of any pump components other than the coupling guard, shaft coupling and motor. The entire cartridge shaft seal shall be removable as a one piece component. Pumps with motors equal to or larger than 15 hp (fifteen horsepower) shall have adequate space within the motor stool so that shaft seal replacement is possible without motor removal.

D. Large In-line Vertical Multi-Stage Pumps (Nominal flows from 130 to 500 gallons per minute) shall have the following features:

1. The pump impellers shall be secured directly to the smooth pump shaft by means of a split cone and nut design.

2. The suction/discharge base shall have ANSI Class 125 or Class 250 flange connections in a slip ring (rotating flange) design as indicated in the drawings or pump schedule.

3. Pump Construction.
 a. Suction/discharge base, pump head Ductile Iron (ASTM 80-55-06)
 b. Shaft couplings, flange rings: Ductile Iron (ASTM 80-55-06)
 c. Shaft 431 Stainless Steel
 d. Motor Stool Cast Iron (ASTM Class 30)
 e. Impellers, diffuser chambers, outer sleeve: 304 Stainless Steel
 f. Impeller wear rings: 304 Stainless Steel
 g. Intermediate Bearing Journals: Silicon Carbide
 h. Intermediate Chamber Bearings: Leadless Tin Bronze
 i. Chamber Bushings: Graphite Filled PTFE
 j. O-rings: EPDM

4. The shaft seal shall be a balanced o-ring cartridge type with the following features:
 a. Collar, Drivers, Spring: 316 Stainless Steel
 b. Shaft Sleeve, Gland Plate: 316 Stainless Steel
c. Stationary Ring: Silicon Carbide
d. Rotating Ring: Silicon Carbide
e. O-rings: EPDM

The Silicon Carbide shall be imbedded with graphite.

5. Shaft seal replacement shall be possible without removal of any pump components other than the coupling guard, motor couplings, motor and seal cover. The entire cartridge shaft seal shall be removable as a one-piece component. Pumps with motors equal to or larger than 15 hp (fifteen horsepower) shall have adequate space within the motor stool so that shaft seal replacement is possible without motor removal.

2.3 INTEGRATED VARIABLE FREQUENCY DRIVE MOTORS

- The VFD shall be of the PWM (Pulse Width Modulation) design using IGBT (Insulated Gate Bipolar Transistor) technology.

- The VFD shall convert incoming fixed frequency three-phase AC power into a variable frequency and voltage for controlling the speed of motor. The motor current shall closely approximate a sine wave. Motor voltage shall be varied with frequency to maintain desired motor current suitable for centrifugal pump control and to eliminate the need for motor de-rating.

- The VFD shall automatically reduce the switching frequency and/or the output voltage and frequency to the motor during periods of sustained ambient temperatures that are higher than the normal operating range. The switching frequency shall be reduced before motor speed is reduced.

- An integral RFI filter shall be standard in the VFD.

- The VFD shall have a minimum of two skip frequency bands which can be field adjustable.

- The VFD shall have internal solid-state overload protection designed to trip within the range of 105-110% of rated current.

- The integrated VFD motor shall include protection against input transients, phase imbalance, loss of AC line phase, over-voltage, under-voltage, VFD over-temperature, and motor over-temperature. Three-phase integrated VFD motors shall be capable of providing full output voltage and frequency with a voltage imbalance of up to 10%.

- The integrated VFD motor shall have, as a minimum, the following input/output capabilities:
 1. Speed Reference Signal: 0-10 VDC, 4-20mA
 2. Digital remote on/off
 3. Fault Signal Relay (NC or NO)
 4. Fieldbus communication port (RS485)

- The motor shall be Totally Enclosed Fan Cooled (TEFC) with a standard NEMA C-Face, Class F insulation with a temperature rise no higher than Class B.

- The cooling design of the motor and VFD shall be such that a Class B motor temperature rise is not exceeded at full rated load and speed at a minimum switching frequency of 9.0 kHz.

- The overall efficiency of the VFD and motor must exceed NEMA Premium Efficiency.

- Motor drive end bearings shall be adequately sized so that the minimum L10 bearing life is 20,000 hours at the minimum allowable continuous flow rate for the pump at full rated speed.
2.4 PUMP SYSTEM CONTROLLER

A. The pump system controller shall be a standard product developed and supported by the pump manufacturer.

B. The controller shall be microprocessor based capable of having software changes and updates via personal computer (notebook). The controller user interface shall have a color display with a minimum screen size of 3-1/2” x 4-5/8” for easy viewing of system status parameters and for field programming. The display shall have a back light with contrast adjustment. Password protection of system settings shall be standard.

C. The controller shall provide internal galvanic isolation to all digital and analog inputs as well as all fieldbus connections.

D. The controller shall have the ability to be connected to a battery to maintain power on controller during periods of loss of supply power.

E. The controller shall have built in data logging capability. Logged values shall be graphically displayed on the controller and able to be exported. A minimum of 7200 samples per logged value with the following parameters available for logging:

- Estimated flow-rate
- Speed of pumps
- Inlet pressure
- Process Value (usually discharge pressure of differential pressure depending on application)
- Power consumption
- Controlling parameter (process value)

F. The controller shall display the following as status readings from a single display on the controller (this display shall be the default):

- Current value of the control parameter, (typically discharge pressure)
- Most recent existing alarm (if any)
- System status with current operating mode
- Status of each pump with current operating mode and rotational speed as a percentage (%)
- Estimated flow-rate, (not requiring flow meter connection)
- User defined measured or calculated data
- Electrical connection overview (all digital I/O and analog I/O)

G. The controller shall have as a minimum the following hardware inputs and outputs:

- Three analog inputs (4-20mA or 0-10VDC)
- Three digital inputs
- Two digital outputs
- Ethernet connection
- Field Service connection to PC for advanced programming and data logging

H. The controller shall be capable of controlling up to six differential pressure zones within a defined differential pressure band. Multi-sensor control shall optimize setpoints by analyzing the minimum limit of each multisensory.

I. Pump system programming (field adjustable) shall include as a minimum the following:

- Water shortage protection (analog or digital)
- Sensor Settings (Suction, Discharge, Differential Pressure analog supply/range)
- PI Controller (Proportional gain and Integral time) settings
- High system pressure indication and shut-down
- Low system pressure indication and shut-down
• Low suction pressure/level shutdown (via digital contact)
• Low suction pressure/level warning (via analog signal)
• Low suction pressure/level shutdown (via analog signal)
• Flow meter settings (if used, analog signal)

J. The controller shall be able to control using up to six DP sensors (zones). The zones shall have priority control setting and minimum and maximum setpoint limits for each DP sensor or zone.

K. The system controller shall be able to detect motor turning opposite direction and give check valve failure notification.

L. The system controller shall be able to input pulse readings from digital pulse meter and log/display accumulated flow.

M. The system controller shall be able to control off subtraction of two pressure or temperature sensors for differential pressure or differential temperature control.

N. The system controller shall be able to accept up to seven programmable set-points via a digital input, (additional input/output module may be required).

O. The controller shall have advanced water shortage protection. When analog sensors (level or pressure) are used for water shortage protection, there shall be two indication levels. One level is for warning indication only (indication that the water level/pressure is getting lower than expected levels) and the other level is for complete system shut-down (water or level is so low that pump damage can occur). System restart after shut-down shall be manual or automatic (user selectable).

P. The system controller shall store up to 24 warning and alarms in memory. The time, date and duration of each alarm shall be recorded. A potential-free relay shall be provided for alarm notification to the building management system. The controller shall display the following alarm conditions:

- High System Pressure
- Low suction pressure (warning and alarm)
- VFD trip/failure
- Loss of remote set-point signal (4-20mA)
- Low system pressure
- Individual pump failure
- Loss of sensor signal (4-20 mA)
- External Fault

T. The pump system controller shall be mounted in a UL Type 3R rated enclosure. A self-certified NEMA enclosure rating shall not be considered equal. The entire control panel shall be UL 508 listed as an assembly. The control panel shall include a main disconnect, circuit breakers for each pump and the control circuit and control relays for alarm functions.

Control panel options shall include, but not be limited to:

- Pump Run Lights
- System Fault Light
- 80 dB System Fault Audible Alarm
Emergency/Normal Operation Switches
Service Disconnect Switches (accessible from side of panel)
Surge Arrestor
100kA SCCR panel rating

U. The controller shall be capable of receiving a redundant sensor input to function as a backup to the primary sensor (typically discharge pressure).

V. Upon loss of signal from remote sensor the controller shall be capable of reverting control to local mounted sensor with new corresponding setpoint.

W. The controller shall have a pump “Test Run” feature such that pumps are switched on during periods of inactivity (system is switched to the “off” position but with electricity supply still connected). The inoperative pumps shall be switched on for a period of two to three (3-4) seconds every 24 hours, 48 hours or once per week and at specific time of day (user selectable).

X. The controller shall be capable of changing the number of pumps available to operate or have the ability limit the maximum power consumption by activation of a digital input for purposes of limited generator supplied power.

Y. The controller shall be capable of displaying instantaneous power consumption (Watts or kilowatts) and cumulative energy consumption (kilowatt-hours).

Z. The controller shall be capable of displaying instantaneous specific energy use (kW/gpm), (optional flow meter must be connected).

AA. The actual pump performance curves (5th order polynomial) shall be loaded (software) into the pump system controller. Pump curve data shall be used for the following:
 a. Display and data logging of calculated flow rate (not requiring flow measurement)
 b. Proportional pressure control
 c. Pump outside of duty range protection
 d. Pump cascade control based on pump efficiency

BB. The controller shall be capable of displaying an estimated flow-rate on the default status screen.

CC. The controller shall have proportional pressure control to compensate for pipe friction loss by decreasing pressure set-point at lower flow-rates and increasing pressure set-point at higher flow-rates by using actual flow rate or calculated flow rate. Proportional pressure control that uses pump speed or power consumption only shall not be considered equal to proportional pressure control that uses actual or calculated flow rate.

DD. The controller shall have the ability to communicate common field-bus protocols, (BACnet, Modbus, Profibus, and LON), via optional communication expansion card installed inside controller.

EE. The controller shall have Ethernet connection with a built-in server allowing for connection to a network with read/write access to controller via web browser and internet.

FF. The controller shall have a programmable Service Contact Field that can be populated with service contact information including: contact name, address, phone number(s) and website.

2.5 SEQUENCE OF OPERATION

A. The system controller shall operate equal capacity variable speed pumps to maintain a constant differential pressure (system set-point from remote DP sensor) or proportional pressure differential pressure setpoint (system setpoint from local mounted sensor(s)), depending on the application. The system controller shall receive an analog signal [4-20mA] from the factory
installed pressure transducer on the discharge and suction manifolds, indicating the actual system pressure and inlet pressure. The controller shall be capable of controlling off the subtraction of discharge minus suction transducers for differential pressure across the manifolds.

Standard Cascade Control (Pumping Efficiency Based):
The pump system controller shall adjust pump speed as necessary to maintain system set-point pressure as flow demand increases. Utilizing the pump curve information (5th order polynomial), the pump system controller shall stage on additional pumps when pump hydraulic efficiency will be higher with additional pumps in operation. Exception: When the flow and head are outside the operating pump(s) allowable operating range the controller shall switch on an additional pump thus distributing flow and allowing all pump(s) to operate in allowable operating range. When the system pressure is equal to the system set-point, all pumps in operation shall reach equal operating speeds. The pump system controller shall have field adjustable Proportional Gain and Integral time (PI) settings for system optimization.

Optional Cascade Control (Pump Start Speed Based):
As flow demand increases the pump speed shall be increased to maintain the system set-point pressure. When the operating pump(s) reach 96% of full speed (adjustable), an additional pump will be started and will increase speed until the system set-point is achieved. When the system pressure is equal to the system set-point all pumps in operation shall reach equal operating speeds. The pump system controller shall have field adjustable Proportional Gain and Integral time (PI) settings for system optimization.

B. The system controller shall be capable of switching pumps on and off to satisfy system demand without the use of flow switches, motor current monitors or temperature measuring devices.

C. All pumps in the system shall alternate automatically based on demand, time and fault. If flow demand is continuous (no flow shut-down does not occur), the system controller shall have the capability to alternate the pumps every 24 hours, every 48 hours or once per week. The interval and actual time of the pump change-over shall be field adjustable.

D. The system controller shall be able to control a pressure maintenance pump, (jockey pump), in the system in pressure boosting applications. The set point of the pressure maintenance pump shall be able to be any value above or below the pump system’s set point. The pressure maintenance pump shall be able to be staged on as back-up pump when capacity of pump system is exceeded.

2.6 LOW FLOW STOP FUNCTION (Constant Pressure Applications)

The system controller shall be capable of stopping pumps during periods of low-flow or zero-flow without wasting water or adding unwanted heat to the liquid. Temperature based no flow shut-down methods that have the potential to waste water and add unwanted temperature rise to the pumping fluid are not acceptable and shall not be used.

Standard Low Flow Stop and Energy Saving Mode
If a low or no flow shut-down is required (periods of low or zero demand) a bladder type diaphragm tank shall be installed with a pre-charge pressure of 70% of system set-point. The tank shall be piped to the discharge manifold or system piping downstream of the pump system. When only one pump is in operation the system controller shall be capable of detecting low flow (less than 10% of pump nominal flow) without the use of additional flow sensing devices. When a low flow is detected, the system controller shall increase pump speed until the discharge pressure reaches the stop pressure (system set-point plus 50% of programmed on/off band, adjustable). The pump shall remain off until the discharge pressure reaches the start pressure (system set-point minus 50% of programmed on/off band, adjustable). Upon low flow shut-down a pump shall be restarted in one of the following two ways:
A. Low Flow Restart: If the low flow condition still exists, the pump shall start and the speed shall again be increased until the stop pressure is reached and the pump shall again be switched off.

B. Normal Flow Restart: If the pump system controller determines a low flow condition no longer exists the pump shall start and the speed shall be increased until the system pressure reaches the system set-point.

[OPTIONAL] Low Flow Stop and Energy Saving Mode

The pump system controller shall be capable receiving a digital signal from a flow switch or an analog signal from a flow meter to indicate a low flow condition. A bladder type diaphragm tank shall be installed with a pre-charge pressure of 70% of system set-point. The tank shall be piped to the discharge manifold or system piping downstream of the pump system. When low flow is detected (signal from flow switch or meter), the system controller shall increase pump speed until the discharge pressure reaches the stop pressure (system set-point plus 50% of programmed on/off band). The pump shall remain off until the discharge pressure reaches the start pressure (system set-point minus 50% of programmed on/off band). The pump shall remain in the energy saving on/off mode during low flow indication. When low flow is no longer present (low flow indication ceases), the pump(s) shall resume constant pressure operation.

It shall be possible to change from the standard low flow stop to the optional low flow stop (and vice-versa) via the user interface.

2.6 SYSTEM CONSTRUCTION

A. Suction and discharge manifold construction shall be in way that ensures minimal pressure drops, minimize potential for corrosion, and prevents bacteria growth at intersection of piping into the manifold. Manifold construction that includes sharp edge transitions or interconnecting piping protruding into manifold is not acceptable. Manifold construction shall be such that water stagnation can not exist in manifold during operation to prevent bacteria growth inside manifold.

B. The suction and discharge manifolds material shall be 316 stainless steel. Manifold connection sizes shall be as follows:

- 3 inch and smaller: Male NPT threaded
- 4 inch through 8 inch: ANSI Class 150 rotating flanges
- 10 inch and larger: ANSI Class 150 flanges

C. Pump Isolation valves shall be provided on the suction and discharge of each pump. Isolation valve sizes 2 inch and smaller shall be nickel plated brass full port ball valves. Isolation valve sizes 3 inch and larger shall be a full lug style butterfly valve. The valve disk shall be of stainless steel. The valve seat material shall be EPDM and the body shall be cast iron, coated internally and externally with fusion-bonded epoxy.

D. A spring-loaded non-slam type check valve shall be installed on the discharge of each pump. The valve shall be a wafer style type fitted between two flanges. The head loss through the check valve shall not exceed 5 psi at the pump design capacity. Check valves 1-1/2" and smaller shall have a POM composite body and poppet, a stainless steel spring with EPDM or NBR seats. Check valves 2" and larger shall have a body material of stainless steel or epoxy coated iron (fusion bonded) with an EPDM or NBR resilient seat. Spring material shall be stainless steel. Disk shall be of stainless steel or leadless bronze.

E. For systems that require a diaphragm tank, a connection of no smaller than ¾" shall be provided on the discharge manifold.

F. A pressure transducer shall be factory installed on the discharge manifold (or field installed as specified on plans). Systems with positive inlet gauge pressure shall have a factory installed
pressure transducer on the suction manifold for water shortage protection. Pressure transducers shall be made of 316 stainless steel. Transducer accuracy shall be +/- 1.0% full scale with hysteresis and repeatability of no greater than 0.1% full scale. The output signal shall be 4-20 mA with a supply voltage range of 9-32 VDC.

G. A bourdon tube pressure gauge, 2.5 inch diameter, shall be placed on the suction and discharge manifolds. The gauge shall be liquid filled and have copper alloy internal parts in a stainless steel case. Gauge accuracy shall be 2/1/2 %. The gauge shall be capable of a pressure of 30% above its maximum span without requiring recalibration.

H. Systems with a flooded suction inlet or suction lift configuration shall have a factory installed water shortage protection device on the suction manifold.

I. The base frame shall be constructed of corrosion resistant 304 stainless steel. Rubber vibration dampers shall be fitted between each pumps and baseframe to minimize vibration.

J. Depending on the system size and configuration, the control panel shall be mounted in one of the following ways:

 On a 304 stainless steel fabricated control cabinet stand attached to the system skid.
 On a 304 stainless steel fabricated skid, separate from the main system skid
 On its own base (floor mounted with plinth)

2.8 TESTING

A. The tester used for testing the pump system shall be constructed and calibrated according to the requirements of hydraulic test standard ISO 9906.

B. The entire pump station shall as a minimum be factory tested for functionality and documented results of functionality test supplied with pump station.

 Functionality testing shall include the following parameters:
 1. Complete System Hydrostatic Test – 1.5 times the nameplate maximum pressure
 2. No-Flow Detection Shutoff Test
 3. Water Shortage Test
 4. Two-Point Setpoint Performance Test.

C. Water used for testing shall be treated with three different filtration systems to ensure only clean water is used for testing pump station.
 1. 25 micron mechanical filter – removes solid parts from water
 2. Activated carbon filter – keeps water clear and eliminates odor
 3. Ultraviolet light system – kills all bacteria growth

D. Optional performance testing shall include: (Select one)
 1. 10-Point Verified Performance Test
 2. Witnessed Verified Performance Test
 3. Remote Witnessed Verified Performance Test

2.8 WARRANTY

A. The warranty period shall be a non-prorated period of 24 months from date of installation, not to exceed 30 months from date of manufacture.