TPE2, TPE2 D, TPE3, TPE3 D

In-line circulator pumps
60 Hz, North America
1. Pump data

Introduction

TP pumps are designed for applications such as:
• district heating systems
• heating systems
• air-conditioning systems
• district cooling systems
• water supply
• industrial processes
• industrial cooling.

The pumps are available with either standard motors (TP) or electronically speed-controlled motors (TPE, TPE2, TPE2 D, TPE3, TPE3 D).

This product guide covers TPE2 (D) and TPE3 (D) speed-controlled pumps.

Please see Grundfos publication L-TP-PG-001 for TP, uncontrolled standard pump, product range and details and L-TPE-PG-01 for TPE series 1000 and 2000 speed controlled pump, product range and details.

The pumps are all single-stage, in-line centrifugal pumps with mechanical shaft seal. The pumps are of the close-coupled type, that is, the pump and the motor are separate units.

TPE, TPE2 and TPE3 speed-controlled pumps

We offer the following speed-controlled pumps which are based on the construction and choice of material of the TP pumps:
• TPE Series 1000 pumps without factory-fitted differential-pressure sensor
• TPE Series 2000 pumps with factory-fitted differential-pressure sensor
• TPE2 (D) pumps without built-in differential-pressure sensor and temperature sensor
• TPE3 (D) pumps with built-in differential-pressure sensor and temperature sensor.

All pumps are fitted with Grundfos permanent-magnet MLE motors with motor efficiency class IE5 according to IEC 60034-30-2. The MLE has a combined, motor and drive, efficiency above NEMA Premium Efficiency resulting in additional energy savings of 7-10 %.

TPE2 pumps

The permanent-magnet motors have a built-in VFD, and the hydraulic components have been specially designed for optimum efficiency.

Via an external signal from a sensor or a controller, the pumps allow any configuration and control method required: constant pressure, temperature, flow or level.

For further information, see page 18.
TPE3 pumps

The pumps have a built-in differential-pressure sensor and temperature sensor.

The pumps are factory-set to AUTO\textsubscript{ADAPT} control.

The permanent-magnet motors of the pumps have a built-in frequency converter for continuous adjustment of the pressure to the flow rate. The hydraulic components have been specially designed for optimum efficiency.

The range is recognized as a preset solution for quick and safe installation. The pumps have a color display for easy and intuitive pump setup and with full access to all functions. The pumps incorporate the following advanced functions:

- AUTO\textsubscript{ADAPT}
- FLOW\textsubscript{ADAPT}
- automatic night setback
- FLOW\textsubscript{LIMIT}
- heat energy monitor
- flow rate estimation
- proportional pressure
- constant pressure
- constant differential temperature control
- constant temperature control.

For further information, see page 22.

Why select a TPE pump

A pump with electronic speed control offers these benefits:

- energy savings
- increased comfort
- control and monitoring of pump performance
- communication with the pump.

High-efficiency motors, IE5

TP pumps are fitted with high-efficiency motors. The pumps are primarily fitted with motors that exceed the NEMA Premium Efficiency rating.
Identification

Type key for TPE2 (D), TPE3 (D)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump range, electronically speed-controlled pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE2</td>
<td>Without built-in sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE3</td>
<td>Built-in differential-pressure and temperature sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Twin-head pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal diameter of inlet and outlet ports, [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum head [decimeters (dm)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Built-in differential-pressure and temperature sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Without built-in sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code for pump version:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Basic version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Special version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code for pipe connection:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>ANSI flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code for materials:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Basic version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Stainless steel CF8 (1.4308) pump housing and motor stool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code for shaft seal

<table>
<thead>
<tr>
<th>Code</th>
<th>Example</th>
<th>B</th>
<th>Q</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundfos type designation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>O-ring seal with fixed seal driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Rubber bellows seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>O-ring seal, balanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Bellows seal with reduced seal faces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>O-ring seal with reduced seal faces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material of rotating face</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Carbon, antimony-impregnated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Carbon, resin-impregnated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Silicon carbide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material of stationary seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Carbon, resin-impregnated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Silicon carbide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Tungsten carbide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material of secondary seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>NBR rubber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>FXM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Performance range

Performance range, TPE2 (D), TPE3 (D)

See page 90 for performance curves.
Performance range, TPE2 D, TPE3 D, twin-head operation
See page 90 for performance curves.
3. Product range

TPE2

TPE2 without built in sensor

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Shaft seal</th>
<th>Cast iron product number</th>
<th>Stainless steel product number</th>
<th>Motor hp (kW)</th>
<th>Ph</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2 40-80</td>
<td>BOBE</td>
<td>99223501</td>
<td>99223516</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223522</td>
<td>99223548</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817684</td>
<td>98817690</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817707</td>
<td>98817713</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>99223504</td>
<td>99223517</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223543</td>
<td>99223549</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817685</td>
<td>98817701</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817708</td>
<td>98817714</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 40-120</td>
<td>BOBE</td>
<td>99223506</td>
<td>99223518</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223544</td>
<td>99223550</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817686</td>
<td>98817702</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817709</td>
<td>98817715</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 40-200</td>
<td>BOBE</td>
<td>99223509</td>
<td>99223519</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223545</td>
<td>99223551</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817687</td>
<td>98817703</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817710</td>
<td>98817716</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>99223512</td>
<td>99223520</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223546</td>
<td>99223552</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817688</td>
<td>98817705</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817711</td>
<td>98817717</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 40-240</td>
<td>BOBE</td>
<td>99223514</td>
<td>99223521</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223547</td>
<td>99223555</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817689</td>
<td>98817706</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817712</td>
<td>98817718</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-60</td>
<td>BOBE</td>
<td>99223558</td>
<td>99223594</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223566</td>
<td>99223610</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817719</td>
<td>98817727</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817721</td>
<td>98817739</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-80</td>
<td>BOBE</td>
<td>99223560</td>
<td>99223597</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223569</td>
<td>99223613</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817720</td>
<td>98817728</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817722</td>
<td>98817741</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-120</td>
<td>BOBE</td>
<td>99223563</td>
<td>99223599</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223571</td>
<td>99223616</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817723</td>
<td>98817729</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817734</td>
<td>98817742</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-150</td>
<td>BOBE</td>
<td>99223574</td>
<td>99223602</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223586</td>
<td>99223619</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817724</td>
<td>98817730</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817735</td>
<td>98817744</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-180</td>
<td>BOBE</td>
<td>99223577</td>
<td>99223605</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223588</td>
<td>99223622</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817725</td>
<td>98817731</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817736</td>
<td>98817745</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-200</td>
<td>BOBE</td>
<td>99223580</td>
<td>99223608</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223591</td>
<td>99223636</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817726</td>
<td>98817732</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817737</td>
<td>98817746</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 50-240</td>
<td>BOBE</td>
<td>99223583</td>
<td>99223638</td>
<td>3 (2.2)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817738</td>
<td>98817747</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 65-60</td>
<td>BOBE</td>
<td>99223641</td>
<td>99223665</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223679</td>
<td>99223696</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817748</td>
<td>98817753</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817758</td>
<td>98817766</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 65-80</td>
<td>BOBE</td>
<td>99223654</td>
<td>99223668</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223682</td>
<td>99223699</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817749</td>
<td>98817754</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817760</td>
<td>98817767</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>Pump type</td>
<td>Shaft seal</td>
<td>Cast iron product number</td>
<td>Stainless steel product number</td>
<td>hp (kW)</td>
<td>Ph</td>
<td>Volt</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>TPE2 65-120</td>
<td>BQBE</td>
<td>99223657</td>
<td>99223671</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223685</td>
<td>99223702</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817750</td>
<td>98817755</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 65-150</td>
<td>BQBE</td>
<td>99223660</td>
<td>99223703</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223688</td>
<td>99223705</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817751</td>
<td>98817756</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 65-180</td>
<td>BQBE</td>
<td>99223662</td>
<td>99223676</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223690</td>
<td>99223707</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817752</td>
<td>98817757</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 65-200</td>
<td>BQBE</td>
<td>99223693</td>
<td>99223711</td>
<td>3 (2.2)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223697</td>
<td>99223711</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 80-40</td>
<td>BQBE</td>
<td>99223723</td>
<td>99223863</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223731</td>
<td>99223871</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817782</td>
<td>98817834</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 80-120</td>
<td>BQBE</td>
<td>99223726</td>
<td>99223866</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223733</td>
<td>99223874</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817783</td>
<td>98817835</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 80-150</td>
<td>BQBE</td>
<td>99223729</td>
<td>99223869</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223754</td>
<td>99223877</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817784</td>
<td>98817837</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 80-180</td>
<td>BQBE</td>
<td>99223757</td>
<td>99223880</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223763</td>
<td>99223884</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 100-40</td>
<td>BQBE</td>
<td>99223736</td>
<td>99223883</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223760</td>
<td>99223892</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817789</td>
<td>98817844</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 100-120</td>
<td>BQBE</td>
<td>99223739</td>
<td>99223886</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223763</td>
<td>99223904</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817791</td>
<td>98817845</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 100-150</td>
<td>BQBE</td>
<td>99223741</td>
<td>99223888</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223765</td>
<td>99223907</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817793</td>
<td>98817846</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE2 100-180</td>
<td>BQBE</td>
<td>99223768</td>
<td>99223910</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817797</td>
<td>98817850</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>Pump type</td>
<td>Shaft seal</td>
<td>Cast iron product number</td>
<td>Stainless steel product number</td>
<td>Motor hp (kW)</td>
<td>Ph</td>
<td>Volt</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>TPE2 D 65-60</td>
<td>BQBE</td>
<td>99223771</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223813</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817798</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817810</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-80</td>
<td>BQBE</td>
<td>99223774</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223816</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817799</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817811</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-120</td>
<td>BQBE</td>
<td>99223819</td>
<td>-</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223822</td>
<td>-</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817800</td>
<td>-</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817812</td>
<td>-</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-150</td>
<td>BQBE</td>
<td>99223780</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223822</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817801</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817814</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-180</td>
<td>BQBE</td>
<td>99223825</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223826</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817802</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817816</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-200</td>
<td>BQBE</td>
<td>99223827</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817817</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-40</td>
<td>BQBE</td>
<td>99223785</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223831</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817803</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817818</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-120</td>
<td>BQBE</td>
<td>99223788</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223834</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817804</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817819</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-150</td>
<td>BQBE</td>
<td>99223791</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223837</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817806</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817820</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-180</td>
<td>BQBE</td>
<td>99223840</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817821</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-40</td>
<td>BQBE</td>
<td>99223804</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223842</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817807</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817822</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-120</td>
<td>BQBE</td>
<td>99223807</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223855</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817808</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817823</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-150</td>
<td>BQBE</td>
<td>99223810</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99223858</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQOE</td>
<td>98817809</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817824</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-180</td>
<td>BQBE</td>
<td>99223860</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98817825</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
</tbody>
</table>
TPE 3

TPE 3 with built in differential pressure and temperature sensor

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Shaft seal</th>
<th>Cast iron product number</th>
<th>Stainless steel product number</th>
<th>Motor hp (kW)</th>
<th>Ph</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3 40-80</td>
<td>BOBE</td>
<td>99223923</td>
<td>99223939</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99223957</td>
<td>99223973</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 40-120</td>
<td>BOBE</td>
<td>99223926</td>
<td>99223942</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819500</td>
<td>98819519</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 40-150</td>
<td>BOBE</td>
<td>99223928</td>
<td>99223945</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819501</td>
<td>98819520</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 40-180</td>
<td>BOBE</td>
<td>99223931</td>
<td>99223948</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99223965</td>
<td>99223981</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 40-200</td>
<td>BOBE</td>
<td>99223934</td>
<td>99223951</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819503</td>
<td>98819522</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 40-240</td>
<td>BOBE</td>
<td>99223937</td>
<td>99223954</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99223970</td>
<td>99223986</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-60</td>
<td>BOBE</td>
<td>99223989</td>
<td>99224022</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224007</td>
<td>99224046</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-80</td>
<td>BOBE</td>
<td>99223991</td>
<td>99224025</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224009</td>
<td>99224051</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-120</td>
<td>BOBE</td>
<td>99224012</td>
<td>99224054</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819592</td>
<td>98819611</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-150</td>
<td>BOBE</td>
<td>99224014</td>
<td>99224030</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224038</td>
<td>99224057</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-180</td>
<td>BOBE</td>
<td>99224017</td>
<td>99224033</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224041</td>
<td>99224059</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-200</td>
<td>BOBE</td>
<td>99224020</td>
<td>99224035</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224043</td>
<td>99224062</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 50-240</td>
<td>BOBE</td>
<td>99224046</td>
<td>99224065</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819631</td>
<td>98819652</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 65-60</td>
<td>BOBE</td>
<td>99224067</td>
<td>99224107</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819666</td>
<td>98819709</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE3 65-80</td>
<td>BOBE</td>
<td>99224071</td>
<td>99224108</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99819667</td>
<td>98819695</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>Pump type</td>
<td>Shaft seal</td>
<td>Cast iron product number</td>
<td>Stainless steel product number</td>
<td>hp (kW)</td>
<td>Ph</td>
<td>Volt</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>TPE3 65-120</td>
<td>BQBE</td>
<td>99224083</td>
<td>99224109</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224112</td>
<td>99224131</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819668</td>
<td>98819696</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819711</td>
<td>98819730</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 65-150</td>
<td>BQBE</td>
<td>99224086</td>
<td>99224110</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224123</td>
<td>99224161</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819682</td>
<td>98819697</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819712</td>
<td>98819731</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 65-180</td>
<td>BQBE</td>
<td>99224089</td>
<td>99224111</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224124</td>
<td>99224173</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819683</td>
<td>98819698</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819713</td>
<td>98819732</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 65-200</td>
<td>BQBE</td>
<td>99224125</td>
<td>99224175</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>98819714</td>
<td>98819733</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>99224176</td>
<td>99224179</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819743</td>
<td>98819903</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE3 80-40</td>
<td>BQBE</td>
<td>99224184</td>
<td>99224185</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>98819748</td>
<td>98819908</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 80-120</td>
<td>BQBE</td>
<td>99224180</td>
<td>99224181</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224186</td>
<td>99224187</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819749</td>
<td>98819909</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 80-150</td>
<td>BQBE</td>
<td>99224182</td>
<td>99224183</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224188</td>
<td>99224189</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819750</td>
<td>98819910</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 80-180</td>
<td>BQBE</td>
<td>99224180</td>
<td>99224190</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819751</td>
<td>98819911</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 100-40</td>
<td>BQBE</td>
<td>99224203</td>
<td>99224192</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224208</td>
<td>99224208</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819764</td>
<td>98819924</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE3 100-40</td>
<td>BQBE</td>
<td>98819774</td>
<td>98819934</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE3 100-120</td>
<td>BQBE</td>
<td>99224205</td>
<td>99224204</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224211</td>
<td>99224210</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819765</td>
<td>98819925</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE3 100-150</td>
<td>BQBE</td>
<td>99224207</td>
<td>99224206</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99224214</td>
<td>99224212</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98819766</td>
<td>98819926</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td>TPE3 100-180</td>
<td>BQBE</td>
<td>99224128</td>
<td>99224213</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>98819777</td>
<td>98819937</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
</tbody>
</table>
TPE 3 D

TPE 3 D with built in differential pressure and temperature sensor

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Shaft seal</th>
<th>Cast iron product number</th>
<th>Stainless steel product number</th>
<th>Motor hp (kW)</th>
<th>Ph</th>
<th>Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2 D 65-60</td>
<td>BQBE</td>
<td>99223771</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>9923813</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817798</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817810</td>
<td>-</td>
<td>0.5 (0.37)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-80</td>
<td>BQBE</td>
<td>99223774</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223816</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817799</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817811</td>
<td>-</td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-120</td>
<td>BQBE</td>
<td>99223777</td>
<td>-</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223819</td>
<td>-</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817800</td>
<td>-</td>
<td>1 (0.75)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817812</td>
<td>-</td>
<td>1 (0.75)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-150</td>
<td>BQBE</td>
<td>99223780</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223822</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817801</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817814</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-180</td>
<td>BQBE</td>
<td>99223825</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223826</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817802</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817816</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 65-200</td>
<td>BQBE</td>
<td>99223827</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>98817817</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-40</td>
<td>BQBE</td>
<td>99223785</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223831</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817803</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817818</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-120</td>
<td>BQBE</td>
<td>99223788</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223834</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817804</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817819</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-150</td>
<td>BQBE</td>
<td>99223791</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223837</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817806</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817820</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 80-180</td>
<td>BQBE</td>
<td>99223840</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>98817821</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-40</td>
<td>BQBE</td>
<td>99223804</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223842</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817807</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817822</td>
<td>-</td>
<td>0.33 (0.25)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-120</td>
<td>BQBE</td>
<td>99223807</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223855</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817808</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817823</td>
<td>-</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-150</td>
<td>BQBE</td>
<td>99223810</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BQBE</td>
<td>99223858</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817809</td>
<td>-</td>
<td>2 (1.5)</td>
<td>1</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817824</td>
<td>-</td>
<td>2 (1.5)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td>TPE2 D 100-180</td>
<td>BQBE</td>
<td>99223860</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>BOQE</td>
<td>98817825</td>
<td>-</td>
<td>3 (2.2)</td>
<td>3</td>
<td>460</td>
</tr>
</tbody>
</table>
4. Operating conditions

System and test pressures

<table>
<thead>
<tr>
<th>Pressure</th>
<th>System pressure [bar]</th>
<th>Test pressure [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN 10</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>232</td>
</tr>
</tbody>
</table>

Sound pressure level

The selection of TPE pumps will reduce the noise at partial load as the motor and, consequently, the motor fan run at a lower speed. Possible flow noise from control valves is also reduced at partial load in the case of the TPE, TPE2, and TPE3 pumps. See “Sound pressure level” on page 81.

Ambient temperature

<table>
<thead>
<tr>
<th>MLE motors:</th>
<th>-4 to 122 °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 - 3 hp (0.25 - 2.2 kW), 2 and 4-pole</td>
<td>(-20 to +50 °C)</td>
</tr>
</tbody>
</table>

Storage

- Down to 22 °F (-30 °C)

Installation altitude

Pump with Grundfos MLE motor

Installation altitude is the height above sea level of the installation site.

Motors installed up to 3280 ft (1000 m) above sea level can be loaded 100%.

The motors can be installed up to 11,480 ft (3500 m) above sea level.

Fig. 2 Motor output power in relation to altitude

In order to maintain the galvanic isolation, you must adapt the supply voltage to the altitude:

Fig. 3 Supply voltage for three-phase motor in relation to altitude

Fig. 4 Supply voltage for single-phase motor in relation to altitude

Note:

Motors installed more than 3280 ft (1000 m) above sea level must not be fully loaded due to the low density and consequent low cooling effect of the air.

If the motor is to operate at ambient temperatures between 122 and 140 °F (50 and 60 °C), select an oversized motor. Contact Grundfos.
5. Pumped liquids

Pumped liquids
The pump is suitable for thin, clean, non-aggressive and non-flammable liquids, not containing solid particles or fibres that may attack the pump mechanically or chemically. See List of pumped liquids on page 15.

Examples
- Central heating system water. The water must meet the requirements of accepted standards on water quality in heating systems:
 - cooling liquids
 - domestic hot water
 - industrial liquids
 - softened water.
If glycol or another antifreeze agent is added to the pumped liquid, the pump must have a shaft seal of the BQQE type. See Shaft seal for water-glycol mixture on page 17.

The pumping of liquids with density and/or kinematic viscosity higher than that of water will have the following effects:
- a considerable pressure drop
- a drop in hydraulic performance
- a rise in power consumption.
In such cases, fit the pump with a bigger motor. If in doubt, contact Grundfos.

If the water contains mineral or synthetic oils or chemicals, or if liquids other than water are pumped, choose the O-rings accordingly.

Liquid temperature
Liquid temperature: -13 to 248 °F (-25 to +120 °C).
Please note that shaft seals operating close to their maximum temperature will require regular maintenance or replacement.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Shaft seal</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2, TPE3</td>
<td>BQBE</td>
<td>32 to 248 °F (0 to +120 °C)</td>
</tr>
<tr>
<td></td>
<td>BQQE</td>
<td>-13 to 248 °F (-25 to +120 °C)</td>
</tr>
</tbody>
</table>

1) 284 °F (140 °C) for a short period.

Depending on the type of cast-iron version and the pump application, the maximum liquid temperature may be limited by local regulations and laws.

List of pumped liquids
TP pumps are designed for circulation systems with constant flow rate; TPE2, TPE2D, TPE3, TPE3D, TPE pumps for systems with variable flow rate.
Thanks to their design, you can use these pumps in a wider liquid temperature range than pumps of the canned rotor type.
A number of typical liquids are listed below.
You can use other pump versions, but we consider the ones listed below to be the best choices.
The list is intended as a general guide only, and it cannot replace actual testing of the pumped liquids and pump materials under specific working conditions. Use the list with some caution as factors such as concentration of the pumped liquid, liquid temperature or pressure may affect the chemical resistance of a specific pump version.

Legend
A May contain additives or impurities that can cause shaft seal problems.
B The density and/or viscosity differ from those of water. Consider this when calculating motor and pump performance.
C The liquid must be oxygen-free (anaerobic).
D Risk of crystallization or precipitation in the shaft seal.
E Insoluble in water.
F The shaft seal rubber parts must be replaced with FKM rubber.
G Bronze housing or impeller required.
H Risk of ice formation on the standby pump. The risk only applies to TP, TPE Series 200 pumps.
Pumped liquids

<table>
<thead>
<tr>
<th>Pumped liquids</th>
<th>Notes</th>
<th>Additional information</th>
<th>Shaft seal TPE2, TPE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
<td>< 248 °F (120 °C)</td>
<td>BOBE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 248 °F (120 °C)</td>
<td>BQOE</td>
</tr>
<tr>
<td>Boiler-feed water</td>
<td></td>
<td>< 248 °F (120 °C)</td>
<td>BOBE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 248 °F (120 °C)</td>
<td>BQOE</td>
</tr>
<tr>
<td>District-heating water</td>
<td></td>
<td>< 248 °F (120 °C)</td>
<td>BOBE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 248 °F (120 °C)</td>
<td>BQOE</td>
</tr>
<tr>
<td>Condensate</td>
<td></td>
<td>< 248 °F (120 °C)</td>
<td>BOBE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 248 °F (120 °C)</td>
<td>BQOE</td>
</tr>
<tr>
<td>Softened water</td>
<td>C</td>
<td>< 248 °F (120 °C)</td>
<td>BOBE</td>
</tr>
<tr>
<td>Brackish water</td>
<td>G</td>
<td>pH > 6.5, 104 °F (40 °C), 1000 ppm Cl<sup>−</sup></td>
<td>BOBE</td>
</tr>
<tr>
<td>Coolants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>B, D, H</td>
<td>< 248 °F (120 °C)</td>
<td>BOQE</td>
</tr>
<tr>
<td>Glycerine (glycerol)</td>
<td>B, D, H</td>
<td>< 248 °F (120 °C)</td>
<td>BOQE</td>
</tr>
<tr>
<td>Potassium acetate</td>
<td>B, D, C, H</td>
<td>< 248 °F (120 °C)</td>
<td>BOQE</td>
</tr>
<tr>
<td>Potassium formate</td>
<td>B, D, C, H</td>
<td>< 248 °F (120 °C)</td>
<td>BOQE</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>B, D, H</td>
<td>< 248 °F (120 °C)</td>
<td>BOQE</td>
</tr>
<tr>
<td>Brine sodium chloride</td>
<td>B, D, C, H</td>
<td>< 41 °F (5 °C), 30 %</td>
<td>BOQE</td>
</tr>
<tr>
<td>Synthetic oils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicone oil</td>
<td>B, E</td>
<td></td>
<td>BQBE</td>
</tr>
<tr>
<td>BQOE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetable oils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn oil</td>
<td>B, F, E</td>
<td></td>
<td>BUBV<sup>2(1) + 3(2)</sup></td>
</tr>
<tr>
<td>Olive oil</td>
<td>B, F, E</td>
<td>< 176 °F (80 °C)</td>
<td>BUBV<sup>2(1) + 3(2)</sup></td>
</tr>
<tr>
<td>Peanut oil</td>
<td>B, F, E</td>
<td></td>
<td>BUBV<sup>2(1) + 3(2)</sup></td>
</tr>
<tr>
<td>Rapeseed oil</td>
<td>D, B, F, E</td>
<td></td>
<td>BUBV<sup>2(1) + 3(2)</sup></td>
</tr>
<tr>
<td>Soybean oil</td>
<td>B, F, E</td>
<td></td>
<td>BUBV<sup>2(1) + 3(2)</sup></td>
</tr>
</tbody>
</table>

Additional information

1) Do not use BAQE for potable water. For potable water, we recommend that you use a BBQE shaft seal.
2) The shaft seal is not standard, but is available on request.
3) Applies only for TPE2.
4) Do not use for potable water.

Cleaning agents

<table>
<thead>
<tr>
<th>Pumped liquids</th>
<th>Notes</th>
<th>Additional information</th>
<th>Shaft seal TPE2, TPE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap (salts of fatty acids)</td>
<td>A, E, (F)</td>
<td>< 176 °F (80 °C)</td>
<td>BQOE (BQOQV)<sup>3</sup></td>
</tr>
<tr>
<td>Alkaline degreasing agent</td>
<td>A, E, (F)</td>
<td>< 176 °F (80 °C)</td>
<td>BQOE (BQOQV)<sup>3</sup></td>
</tr>
</tbody>
</table>

Oxidants

<table>
<thead>
<tr>
<th>Pumped liquids</th>
<th>Notes</th>
<th>Additional information</th>
<th>Shaft seal TPE2, TPE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td></td>
<td>< 104 °F (40 °C), < 2 %</td>
<td>BQBE</td>
</tr>
</tbody>
</table>

Alkalis

<table>
<thead>
<tr>
<th>Pumped liquids</th>
<th>Notes</th>
<th>Additional information</th>
<th>Shaft seal TPE2, TPE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium hydroxide</td>
<td></td>
<td>< 212 °F (100 °C), < 30 %</td>
<td>BQOE</td>
</tr>
<tr>
<td>Calcium hydroxide</td>
<td></td>
<td>< 212 °F (100 °C), < 10 %</td>
<td>BQOE</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td></td>
<td>< 68 °F (20 °C), < 20 %</td>
<td>BQOE</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td></td>
<td>< 104 °F (40 °C), < 20 %</td>
<td>BQOE</td>
</tr>
</tbody>
</table>
Shaft seal for water-glycol mixture

Fig. 5 Operating range of EPDM shaft seals

Fig. 6 Operating range of FKM shaft seals
6. TPE2

Fig. 7 TPE2 and TPE2 D pumps

Technical data

- **Flow rate:** Up to 528 GPM (120 m³/h)
- **Head:** Up to 82 ft (25 m)
- **Liquid temperature:** -13 to 248 °F (-25 to +120 °C) (284 °F (140 °C) for a short period)
- **Maximum operating pressure:** 232 psi (16 bar)
- **Motor sizes, single-phase:** 0.33 to 2 hp (0.25 to 1.5 kW)
- **Motor sizes, three-phase:** 0.33 to 3 hp (0.25 to 2.2 kW)

Construction

Via an external signal from a sensor or a controller, the pumps allow any configuration and control method required, such as constant pressure, temperature, flow rate or level.

The permanent-magnet motor has a built-in frequency converter for continuous adjustment of the pressure to the flow rate. All pumps are fitted with Grundfos permanent-magnet MLE motors that have motor efficiency class IE5 according to IEC 60034-30-2. The range is a preset solution for quick and safe installation.

The pumps are available as single-head, TPE2, and twin-head, TPE2 D.

The pumps have Class 125 flanges.

The pumps are fitted with an unbalanced mechanical shaft seal.

The power head (motor, pump head and impeller) and pump housing are held together by a specially designed clamp. The clamp allows a fast repositioning of the pump housing and fast service of the pump.

The twin-head pumps are designed with two parallel power heads. A flap valve in the common outlet port is opened by the flow of the pumped liquid and prevents backflow of liquid into the idle pump head.

As radial and axial forces are absorbed by the fixed bearing in the motor drive-end, the pump requires no bearing.

Pumps with stainless-steel pump housing, version I, are suitable for circulation of domestic hot water.

Materials

Fig. 8 Sectional drawing of a TPE2 pump

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Component</th>
<th>Material</th>
<th>EN/DIN (ASTM/AISI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump housing</td>
<td>Cast iron EN-GJL-250</td>
<td>EN1561 (ASTM A48 CL 40B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless steel</td>
<td>EN 1.4308 (CF8)</td>
</tr>
<tr>
<td>2</td>
<td>Impeller</td>
<td>Composite PES-GF30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Neck ring</td>
<td>Stainless steel</td>
<td>EN 1.4404 (316/316L)</td>
</tr>
<tr>
<td>4</td>
<td>Pump head/motor stool</td>
<td>Cast iron EN-GJL-250</td>
<td>EN1561 (ASTM A48 CL 40B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless steel</td>
<td>EN 1.4308 (CF8)</td>
</tr>
<tr>
<td></td>
<td>Secondary seals</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotating seal face</td>
<td>Tungsten carbide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary seat</td>
<td>Carbon (resin-impregnated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tungsten carbide</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Stub shaft</td>
<td>Stainless steel</td>
<td>EN 1.4404 (316/316L)</td>
</tr>
</tbody>
</table>
Applications
The pumps have integrated speed control for automatic adaptation of performance to current conditions. The energy consumption is thus kept at a minimum. The pumps can operate at any duty point within the range between minimum and maximum speed.

Depending on the application, the pumps offer energy savings, increased comfort or improved processing. The pumps can be fitted with sensor types meeting the requirements mentioned in 20. Accessories on page 104.

Constant curve
The pumps are factory-set to constant-curve control mode.

Fig. 9 Duty range of TPE2

<table>
<thead>
<tr>
<th>System application</th>
<th>Select this control mode</th>
</tr>
</thead>
</table>
| In systems with relatively large pressure losses in the distribution pipes and in air-conditioning and cooling systems.
 • Two-pipe heating systems with thermostatic valves and the following:
 • very long distribution pipes
 • strongly throttled pipe balancing valves
 • differential-pressure regulators
 • large pressure losses in those parts of the system through which the total quantity of water flows, for example, boiler, heat exchanger and distribution pipe up to the first branching
 • primary circuit pumps in systems with large pressure losses in the primary circuit
 • air-conditioning systems with the following:
 – heat exchangers (fan coils)
 – cooling ceilings
 – cooling surfaces. | Constant differential-pressure with differential pressure sensor located in the system |
| In systems with relatively small pressure losses in the distribution pipes.
 • Two-pipe heating systems with thermostatic valves and the following:
 – sized for natural circulation
 – small pressure losses in those parts of the system through which the total quantity of water flows, for example, boiler, heat exchanger and distribution pipe up to the first branching, or modified to a high differential temperature between flow pipe and return pipe, for example, district heating.
 • Underfloor heating systems with thermostatic valves.
 • One-pipe heating systems with thermostatic valves or pipe balancing valves.
 • Primary circuit pumps in systems with small pressure losses in the primary circuit. | Constant differential pressure |
| In pressure boosting systems. | Constant pressure |
In systems with a fixed system characteristic. Examples:
- one-pipe heating systems
- boiler shunts
- systems with three-way valves
- domestic hot-water circulation.

If an external controller is installed, the pump is able to change from one constant curve to another, depending on the value of the external signal. The pump can also be set to operate according to the maximum or minimum curve, like an uncontrolled pump:
- Use the maximum curve mode in periods in which a maximum flow rate is required.
 This operating mode is, for instance, suitable for hot-water priority.
- Use the minimum curve mode in periods where a minimum flow rate is required.
 This operating mode is, for instance, suitable for manual night setback instead of automatic night setback.

In systems requiring a constant flow rate, independent of pressure drop. Examples:
- chillers for air-conditioning
- heating surfaces
- cooling surfaces.

In systems requiring a constant tank level, independently of the flow rate. Examples:
- process water tanks
- boiler condensate tanks.

In systems with pumps operating in parallel. The multipump function enables the control of single-head pumps connected in parallel (two to four pumps) and twin-head pumps without the use of external controllers. The pumps in a multipump system communicate with each other via the wireless GENI air connection or the wired GENI connection.

<table>
<thead>
<tr>
<th>System application</th>
<th>Select this control mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant temperature and constant differential temperature</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

Constant curve

- ![Diagram](image)

Constant flow rate

- ![Diagram](image)

Constant level

- ![Diagram](image)

"Assist" menu
"Multipump setup"
Multipump system

The multipump function enables the control of single-head pumps connected in parallel or twin-head pumps without the use of external controllers. The pumps in a multipump system communicate with each other via the wireless GENIair connection or the wired GENI connection.

You set a multipump system via a selected pump - the master pump which is the first selected pump.

If you configure two pumps in the system with an outlet-pressure sensor, both pumps can function as master pumps and take over the master pump function if the other fails. This provides additional redundancy in the multipump system.

You can connect all Grundfos pumps with a wireless GENIair connection to the multipump system.

The multipump functions are described in the following sections.

Alternating operation

Alternating operation functions as a duty-standby operating mode and is possible with two pumps of same size and type connected in parallel. The main purpose of the function is to ensure an even amount of running hours and to ensure that the standby pump takes over if the running pump stops due to an alarm. Each pump requires a non-return valve in series with the pump.

You can choose between two alternating operation modes:

• Alternating operation, time. Pump changeover to the other is based on time.
• Alternating operation, energy. Pump changeover to the other is based on energy consumption. If the duty pump fails, the other pump takes over automatically. Only one pump is operating at a time. The change from one pump to the other depends on time or energy. If a pump fails, the other pump takes over automatically.

Pump system:
• Twin-head pump.
• Two single-head pumps connected in parallel. The pumps must be of the same type and size. Each pump requires a non-return valve in series with the pump.

Backup operation

Backup operation is possible with two same size and type pumps connected in parallel. Each pump requires a non-return valve in series with the pump.

One pump is operating continuously. The backup pump is operated for a short time each day to prevent seizing up. If the duty pump stops due to a fault, the backup pump starts automatically.

Pump system:
• Twin-head pump.
• Two single-head pumps connected in parallel. The pumps must be of the same type and size. Each pump requires a non-return valve in series with the pump.

Cascade operation

Cascade operation ensures that the pump performance is automatically adapted to the consumption by switching pumps on or off. As a result, the system runs as energy-efficiently as possible with a constant pressure and a limited number of pumps.

When a twin-head pump is running in constant-pressure control mode, the second pump head starts at 90 % and stops at 50 % performance.

All pumps in operation will run at equal speed. Pump changeover is automatic and depends on energy, operating hours and fault.

Pump system:
• Twin-head pump.
• Two to four single-head pumps connected in parallel. The pumps must be of the same type and size. Each pump requires a non-return valve in series with the pump.

Set the control mode to "Const. pressure" or "Const. curve".

Control options

Communication with the pumps is possible via a central building management system, Grundfos GO or control panel.

The purpose of controlling TPE2 pumps is to monitor and control the pressure, temperature, flow rate and liquid level of the system.

For further information on control options of TPE2 pumps, see page 71.
7. TPE3

Technical data

Flow rate: Up to 528 GPM (120 m³/h)
Head: Up to 82 ft25 m
Liquid temperature: -13 to 248 °F (-25 to +120 °C)
(284 °F (140 °C)) for a short period)
Maximum operating pressure: 232 psi (16 bar)
Motor sizes, single-phase: 0.33 to 2 hp
(0.25 to 1.5 kW)
Motor sizes, three-phase: 0.33 to 3 hp
(0.25 to 2.2 kW)

Construction

The pumps have built-in differential-pressure and temperature sensor.

The permanent-magnet motor has a built-in frequency converter for continuous adjustment of the pressure to the flow rate. All pumps are fitted with Grundfos permanent-magnet MLE motors that have motor efficiency class IE5 according to IEC 60034-30-2.

The range is a preset solution for quick and safe installation.

The pump has a color display for easy and intuitive pump setup and with full access to all functions.

The pumps are available as single-head, TPE3, and twin-head, TPE3 D, pumps.

The pumps have Class 125 flanges.

The pumps are fitted with an unbalanced mechanical shaft seal.

The power head (motor, pump head and impeller) and pump housing are held together by a specially designed clamp. The clamp allows fast repositioning of the pump housing and fast service of the pump.

The twin-head pumps are designed with two parallel power heads. A flap valve in the common outlet port is opened by the flow of the pumped liquid and prevents backflow of liquid into the idle pump head.

As radial and axial forces are absorbed by the fixed bearing in the motor drive-end, the pump requires no bearing.

Pumps with stainless-steel pump housing, version I, are suitable for circulation of domestic hot water.

Materials

Material specification

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Component</th>
<th>Material</th>
<th>EN/DIN (ASTM/AISI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump housing</td>
<td>Cast iron EN-GJL-250 Stainless steel</td>
<td>EN1561 (ASTM A48 CL 40B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EN 1.4308 (CF8)</td>
</tr>
<tr>
<td>2</td>
<td>Impeller</td>
<td>Composite PES-GF30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Neck ring</td>
<td>Stainless steel EN 1.4404 (316/316L)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pump head/motor stool</td>
<td>Cast iron EN-GJL-250 Stainless steel</td>
<td>EN1561 (ASTM A48 CL 40B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EN 1.4308 (CF8)</td>
</tr>
<tr>
<td></td>
<td>Secondary seals</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotating seal face</td>
<td>Tungsten carbide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary seal</td>
<td>Carbon (resin-impregnated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tungsten carbide</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Stub shaft</td>
<td>Stainless steel EN 1.4404 (316/316L)</td>
<td></td>
</tr>
</tbody>
</table>
Applications
The pumps have integrated speed control for automatic adaptation of performance to current conditions.
The energy consumption is thus kept at a minimum. The pumps can operate at any duty point within the range between minimum and maximum speed.

Depending on the application, the pumps offer energy savings, increased comfort or improved processing. The pumps are suitable for applications requiring pressure control.

AUTO ADAPT
TPE3 pumps are factory-set to AUTO ADAPT which continuously adapts the pump performance according to the actual system characteristic.

System application

Recommended for most heating systems, especially in systems with relatively large pressure losses in the distribution pipes. See description under proportional pressure.

In replacement situations where the proportional-pressure duty point is unknown.

The duty point has to be within the "AUTO ADAPT" operating range. During operation, the pump automatically makes the necessary adjustment to the actual system characteristics.

This setting ensures minimum energy consumption and low noise level from the valves, and therefore reduces operating costs and increases comfort.

The FLOW ADAPT control mode is a combination of AUTO ADAPT and FLOW LIMIT.
This control mode is suitable for systems where a maximum flow rate limit, FLOW LIMIT, is desired. The pump continuously monitors and adjusts the flow rate, thus ensuring that the selected FLOW LIMIT is not exceeded.

In systems with mixing loops, the control mode can control the flow rate in each loop.

Benefits:
- Enough water for all loops at peak load conditions if each loop has been set to the right maximum flow rate.
- The dimensioned flow rate for each zone, required heat energy, is determined by the flow from the pump.
- This value can be set precisely in the FLOW ADAPT control mode without the use of pump throttling valves.
- When the flow rate is set lower than the balancing valve setting, the pump ramps down instead of losing energy by pumping against a balancing valve.
- Cooling surfaces in air-conditioning systems operate at high pressure and low flow rate.

In systems with relatively large pressure losses in the distribution pipes and in air-conditioning and cooling systems.

- Two-pipe heating systems with thermostat valves and the following:
 - very long distribution pipes
 - strongly throttled pipe balancing valves
 - differential-pressure regulators
 - large pressure losses in those parts of the system through which the total quantity of water flows, for example, boiler, heat exchanger and distribution pipe up to the first branching.
- Primary circuit pumps in systems with large pressure losses in the primary circuit.
- Air-conditioning systems with the following:
 - heat exchangers (fan coils)
 - cooling ceilings
 - cooling surfaces.

In systems with relatively large pressure losses in the distribution pipes and in air-conditioning and cooling systems.

- Two-pipe heating systems with thermostat valves and the following:
 - very long distribution pipes
 - strongly throttled pipe balancing valves
 - differential-pressure regulators
 - large pressure losses in those parts of the system through which the total quantity of water flows, for example, boiler, heat exchanger and distribution pipe up to the first branching.
- Primary circuit pumps in systems with large pressure losses in the primary circuit.
- Air-conditioning systems with the following:
 - heat exchangers (fan coils)
 - cooling ceilings
 - cooling surfaces.
<table>
<thead>
<tr>
<th>System application</th>
<th>Select this control mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>In systems with relatively small pressure losses in the distribution pipes.</td>
<td>Constant differential pressure</td>
</tr>
<tr>
<td>• Two-pipe heating systems with thermostatic valves and the following:</td>
<td>![Constant differential pressure diagram]</td>
</tr>
<tr>
<td>– dimensioned for natural circulation</td>
<td></td>
</tr>
<tr>
<td>– small pressure losses in those parts of the system through which the total</td>
<td></td>
</tr>
<tr>
<td>quantity of water flows, for example, boiler, heat exchanger and</td>
<td></td>
</tr>
<tr>
<td>distribution pipe up to the first branching or modified to a high</td>
<td></td>
</tr>
<tr>
<td>differential temperature between flow pipe and return pipe, for example,</td>
<td></td>
</tr>
<tr>
<td>district heating.</td>
<td></td>
</tr>
<tr>
<td>• Underfloor heating systems with thermostatic valves.</td>
<td></td>
</tr>
<tr>
<td>• One-pipe heating systems with thermostatic valves or pipe balancing valves.</td>
<td></td>
</tr>
<tr>
<td>• Primary circuit pumps in systems with small pressure losses in the primary</td>
<td></td>
</tr>
<tr>
<td>circuit.</td>
<td></td>
</tr>
<tr>
<td>In pressure boosting systems.</td>
<td></td>
</tr>
<tr>
<td>In systems with a fixed system characteristic.</td>
<td>Constant pressure</td>
</tr>
<tr>
<td>Examples:</td>
<td>![Constant pressure diagram]</td>
</tr>
<tr>
<td>• one-pipe heating systems</td>
<td></td>
</tr>
<tr>
<td>• boiler shunts</td>
<td></td>
</tr>
<tr>
<td>• systems with three-way valves</td>
<td></td>
</tr>
<tr>
<td>• domestic hot-water circulation.</td>
<td></td>
</tr>
<tr>
<td>You can use $\text{FLOW}_{\text{LIMIT}}$ to control the maximum circulation flow</td>
<td></td>
</tr>
<tr>
<td>rate.</td>
<td></td>
</tr>
<tr>
<td>In systems requiring a constant flow rate, independently of pressure drop.</td>
<td>Constant temperature and</td>
</tr>
<tr>
<td>Examples:</td>
<td>constant differential</td>
</tr>
<tr>
<td>• chillers for air-conditioning</td>
<td>temperature</td>
</tr>
<tr>
<td>• heating surfaces</td>
<td>![Constant temperature and differential temperature diagram]</td>
</tr>
<tr>
<td>• cooling surfaces</td>
<td></td>
</tr>
<tr>
<td>In systems requiring a constant tank level, independently of the flow rate.</td>
<td>Constant flow rate</td>
</tr>
<tr>
<td>Examples:</td>
<td>![Constant flow rate diagram]</td>
</tr>
<tr>
<td>• process water tanks</td>
<td></td>
</tr>
<tr>
<td>• boiler condensate tanks.</td>
<td></td>
</tr>
<tr>
<td>In systems with pumps operating in parallel.</td>
<td>Constant level</td>
</tr>
<tr>
<td>The multipump function enables the control of single-head pumps connected in</td>
<td>![Constant level diagram]</td>
</tr>
<tr>
<td>parallel (two to four pumps) and twin-head pumps without the use of external</td>
<td></td>
</tr>
<tr>
<td>controllers.</td>
<td></td>
</tr>
<tr>
<td>The pumps in a multipump system communicate with each other via the wireless</td>
<td></td>
</tr>
<tr>
<td>GENIair connection or the wired GENI connection.</td>
<td></td>
</tr>
<tr>
<td>“Assist” menu</td>
<td>"Multipump setup"</td>
</tr>
</tbody>
</table>

| "Assist" menu | "Multipump setup" |
| "Multipump setup" | |

In systems with pumps operating in parallel.

The multipump function enables the control of single-head pumps connected in parallel (two to four pumps) and twin-head pumps without the use of external controllers. The pumps in a multipump system communicate with each other via the wireless GENIair connection or the wired GENI connection.
Multipump system
The multipump function enables the control of two
pumps connected in parallel without the use of
external controllers. The pumps in a multipump system
communicate with each other via the wireless GENIair
connection or the wired GENI connection.
A multipump system is set via a selected pump: the
master pump, which is the first selected pump. If two
pumps in the system are configured with an outlet-
pressure sensor, both pumps can function as master
pumps and take over the master pump function if the
other fails. This provides additional redundancy in the
multipump system.
The multipump functions are described in the following
sections.

Alternating operation
Alternating operation functions as a duty-standby
operating mode and is possible with two pumps of
same size and type connected in parallel. The main
purpose of the function is to ensure an even amount of
running hours and to ensure that the standby pump
takes over if the running pump stops due to an alarm.
Each pump requires a non-return valve in series with
the pump.
You can choose between two alternating operation
modes:
• Alternating operation, time.
 Pump changeover to the other is based on time.
• Alternating operation, energy.
 Pump changeover to the other is based on energy
 consumption.
 If the duty pump fails, the other pump takes over
 automatically.
 Only one pump is operating at a time. The change
 from one pump to the other depends on time or
 energy. If a pump fails, the other pump takes over
 automatically.
Pump system:
• Twin-head pump.
• Two single-head pumps connected in parallel.
 The pumps must be of the same type and size.
 Each pump requires a non-return valve in series
 with the pump.

Backup operation
Backup operation is possible with two same size and
type pumps connected in parallel. Each pump requires
a non-return valve in series with the pump.
One pump is operating continuously. The backup
pump is operated for a short time each day to prevent
seizing up. If the duty pump stops due to a fault, the
backup pump starts automatically.
Pump system:
• Twin-head pump.
• Two single-head pumps connected in parallel.
 The pumps must be of the same type and size.
 Each pump requires a non-return valve in series
 with the pump.

Cascade operation
Cascade operation ensures that the pump
performance is automatically adapted to the
consumption by switching pumps on or off. As a result,
the system runs as energy-efficiently as possible with
a constant pressure and a limited number of pumps.
When a twin-head pump is running in constant-
pressure control mode, the second pump head starts
at 90% and stops at 50% performance. All pumps in
operation run at equal speed. Pump changeover is
automatic and depends on energy, operating hours
and fault.
Pump system:
• Twin-head pump.
• Two to four single-head pumps connected in
 parallel.
 The pumps must be of the same type and size.
 Each pump requires a non-return valve in series
 with the pump.
 Set the control mode to “Const. pressure” or “Const.
 curve”.

Control options
Communication with the pumps is possible via the
control panel, Grundfos GO or a central building
management system.
The purpose of controlling the pumps is to monitor and
control the pressure, temperature, flow rate of the
system.
For further information on control options of the
pumps, see page 71.
8. User interfaces for TPE pumps

Advanced control panel for TPE pumps

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>Fitted as standard</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
<td>-</td>
</tr>
</tbody>
</table>

![Advanced control panel](image)

Fig. 14 Advanced control panel

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Grundfos Eye
The indicator light shows the operating status of
the pump.
See Priority of settings on page 66 for further
information.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Graphical color display.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Press the button to go one step back.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Press the button to navigate between main
menus, displays and digits.
When you change the menu, the display always shows the top display of the new menu.
Press the buttons to navigate between submenus or change value settings.
Note: If you have disabled the possibility to make settings with the “Enable/disable settings” function, then you can enable it again temporarily by pressing these buttons simultaneously for at least 5 seconds. See Buttons on product (“Enable/disable settings”) on page 59.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Press the button to make the pump ready for
operation and pump start and stop.
Start:
If you press the button when the pump is stopped, the pump will only start if no other functions with higher priority have been enabled.
Stop:
If you press the button when the pump is running, the pump is always stopped. When you stop the pump via this button, the icon appears in the bottom of the display.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Press the button to go to the “Home” menu.</td>
</tr>
</tbody>
</table>
"Home" display

Fig. 15 Example of "Home" display

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>"Home" This menu shows up to four user-defined parameters. You can select parameters shown as shortcut icon , and when pressing you go directly to the "Settings" display for the selected parameter.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>"Status" This menu shows the status of the pump and system as well as warnings and alarms.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>"Settings" This menu gives access to all setting parameters. You can make detailed settings of the pump in this menu. See "Description of selected functions" on page 35.</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>"Assist" This menu enables "Assisted Pump Setup", provides a short description of the control modes and offers fault advice. See "Assist" on page 61.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>This symbol indicates that the pump has been stopped via the .</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>This symbol indicates that the pump is functioning as master pump in a multipump system.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>This symbol indicates that the pump is functioning as a slave pump in a multipump system.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>This symbol indicates that the pump is operating in a multipump system. See "Multipump setup" ("Setup of multi-pump system") on page 62.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>This symbol indicates that the possibility to make settings has been disabled for protective reasons. See "Buttons on product" ("Enable/disable settings") on page 59.</td>
</tr>
</tbody>
</table>

Startup guide

The pump incorporates a startup guide which is started at the first startup. See "Run startup guide" on page 60. After the startup guide, the main menus appear in the display.
Menu overview for advanced control panel

Main menus

<table>
<thead>
<tr>
<th>Section</th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Multipump system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Section

- "Operating status"
- "Operating mode, from"
- "Control mode"
- "Pump performance"
- "Actual controlled value"
- "Max. curve and duty point"
- "Resulting setpoint"
- "Liquid temperature"
- "Speed"
- "Acc. flow, specific energy"
- "Power and energy consumption"
- "Measured values"
- "Analog input 1"
- "Analog input 2"
- "Analog input 3"
- "Pt100/1000 input 1"
- "Pt100/1000 input 2"
- "Analog output"
- "Warning and alarm"
- "Actual warning and alarm"
- "Warning log"
- "Alarm log"
- "Heat energy monitor"
- "Heat power"
- "Heat energy"
- "Flow rate"
- "Volume"
- "Hour counter"
- "Temperature 1"
- "Temperature 2"
- "Differential temp."
- "Operating log"
- "Operating hours"
- "Trend data"
- "Fitted modules"
- "Date and time"
- "Product identification"
- "Motor bearing monitoring"
- "Multipump system"
- "System operating status"
- "System performance"
- "System input power and energy"
- "Pump 1, multipump sys."
- "Pump 2, multipump sys."
- "Pump 3, multipump sys."

• Available.
<table>
<thead>
<tr>
<th>Settings</th>
<th>TPE2, TPE2 D</th>
<th>TPE3, TPE3 D</th>
<th>Multipump system</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Setpoint”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Setpoint”</td>
<td>35</td>
</tr>
<tr>
<td>“Operating mode”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Operating mode”</td>
<td>36</td>
</tr>
<tr>
<td>“Set manual speed”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Set manual speed”</td>
<td>36</td>
</tr>
<tr>
<td>“Set user-defined speed”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Set user-defined speed”</td>
<td>36</td>
</tr>
<tr>
<td>“Control mode”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Control mode”</td>
<td>36</td>
</tr>
<tr>
<td>“Flow limit”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“FLOW LIMIT”</td>
<td>43</td>
</tr>
<tr>
<td>“Automatic night setback”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Automatic night setback”</td>
<td>44</td>
</tr>
<tr>
<td>“Analog inputs”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog inputs”</td>
<td>44</td>
</tr>
<tr>
<td>“Analog input 1, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog inputs”</td>
<td>44</td>
</tr>
<tr>
<td>“Analog input 2, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog inputs”</td>
<td>44</td>
</tr>
<tr>
<td>“Analog input 3, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog inputs”</td>
<td>44</td>
</tr>
<tr>
<td>“Built-in Grundfos sensor”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Built-in Grundfos sensor”</td>
<td>45</td>
</tr>
<tr>
<td>“Pt100/1000 inputs”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Pt100/1000 inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Pt100/1000 input 1, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Pt100/1000 inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Pt100/1000 input 2, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Pt100/1000 inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Digital inputs”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Digital input 1, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Digital input 2, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs”</td>
<td>46</td>
</tr>
<tr>
<td>“Digital inputs/outputs”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs/outputs”</td>
<td>47</td>
</tr>
<tr>
<td>“Digital input/output 1, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs/outputs”</td>
<td>47</td>
</tr>
<tr>
<td>“Digital input/output 2, setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Digital inputs/outputs”</td>
<td>47</td>
</tr>
<tr>
<td>“Relay outputs”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Relay outputs”</td>
<td>48</td>
</tr>
<tr>
<td>“Relay output 1”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Signal relays 1 and 2” (“Relay outputs”)</td>
<td>48</td>
</tr>
<tr>
<td>“Relay output 2”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Relay outputs”</td>
<td>48</td>
</tr>
<tr>
<td>“Analog output”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog output”</td>
<td>49</td>
</tr>
<tr>
<td>“Output signal”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog output”</td>
<td>49</td>
</tr>
<tr>
<td>“Function of analog output”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Analog output”</td>
<td>49</td>
</tr>
<tr>
<td>“Controller settings”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Controller” (“Controller settings”)</td>
<td>50</td>
</tr>
<tr>
<td>“Operating range”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Operating range”</td>
<td>51</td>
</tr>
<tr>
<td>“Setpoint influence”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Setpoint influence”</td>
<td>52</td>
</tr>
<tr>
<td>“External setpoint function”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“External setpoint influence”</td>
<td>52</td>
</tr>
<tr>
<td>“Predefined setpoints”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Predefined setpoints”</td>
<td>54</td>
</tr>
<tr>
<td>“Temperature influence”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Temperature influence”</td>
<td>54</td>
</tr>
<tr>
<td>“Monitoring functions”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Monitoring functions”</td>
<td></td>
</tr>
<tr>
<td>“Motor bearing monitoring”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Motor bearing monitoring”</td>
<td>57</td>
</tr>
<tr>
<td>“Motor bearing maintenance”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Bearings replaced” (“Motor bearing maintenance”)</td>
<td>57</td>
</tr>
<tr>
<td>“Limit-exceeded function”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Limit-exceeded function”</td>
<td>55</td>
</tr>
<tr>
<td>“Special functions”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Special functions</td>
<td>56</td>
</tr>
<tr>
<td>“Pulse flowmeter setup”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Pulse flowmeter setup”</td>
<td>56</td>
</tr>
<tr>
<td>“Ramps”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Ramps”</td>
<td>56</td>
</tr>
<tr>
<td>“Standstill heating”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Standstill heating”</td>
<td>57</td>
</tr>
<tr>
<td>“Communication”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Communication</td>
<td>58</td>
</tr>
<tr>
<td>“Pump number”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Number” (“Pump number”)</td>
<td>58</td>
</tr>
<tr>
<td>“Enable/disable radio comm.”</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>“Radio communication” (“Enable/disable radio comm.”)</td>
<td>58</td>
</tr>
</tbody>
</table>
User interfaces for TPE pumps

Assisted pump setup

<table>
<thead>
<tr>
<th>Setting</th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Multipump system</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Assisted pump setup"</td>
<td>●</td>
<td>●</td>
<td>"Assisted pump setup"</td>
<td>61</td>
</tr>
<tr>
<td>"Setup, analog input"</td>
<td>●</td>
<td>●</td>
<td>"Setup, analog input"</td>
<td>62</td>
</tr>
<tr>
<td>"Setting of date and time"</td>
<td>●</td>
<td>●</td>
<td>"Date and time"</td>
<td>58</td>
</tr>
<tr>
<td>"Multipump setup"</td>
<td>●</td>
<td>●</td>
<td>"Multipump setup"</td>
<td>62</td>
</tr>
<tr>
<td>"Description of control mode"</td>
<td>●</td>
<td>●</td>
<td>"Description of control mode"</td>
<td>65</td>
</tr>
<tr>
<td>"Assisted fault advice"</td>
<td>●</td>
<td>●</td>
<td>"Assisted fault advice"</td>
<td>65</td>
</tr>
</tbody>
</table>

General settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Multipump system</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"General settings"</td>
<td>●</td>
<td>●</td>
<td>General settings</td>
<td>58</td>
</tr>
<tr>
<td>"Language"</td>
<td>●</td>
<td>●</td>
<td>"Language"</td>
<td>58</td>
</tr>
<tr>
<td>"Set date and time"</td>
<td>●</td>
<td>●</td>
<td>"Date and time"</td>
<td>58</td>
</tr>
<tr>
<td>"Units"</td>
<td>●</td>
<td>●</td>
<td>"Unit configuration"</td>
<td>58</td>
</tr>
<tr>
<td>"Enable/disable settings"</td>
<td>●</td>
<td>●</td>
<td>"Buttons on product"</td>
<td>59</td>
</tr>
<tr>
<td>"Delete history"</td>
<td>●</td>
<td>●</td>
<td>"Delete history"</td>
<td>59</td>
</tr>
<tr>
<td>"Define Home display"</td>
<td>●</td>
<td>●</td>
<td>"Define Home display"</td>
<td>59</td>
</tr>
<tr>
<td>"Display settings"</td>
<td>●</td>
<td>●</td>
<td>"Display settings"</td>
<td>59</td>
</tr>
<tr>
<td>"Store actual settings"</td>
<td>●</td>
<td>●</td>
<td>"Store settings"</td>
<td>59</td>
</tr>
<tr>
<td>"Recall stored settings"</td>
<td>●</td>
<td>●</td>
<td>"Recall settings"</td>
<td>59</td>
</tr>
<tr>
<td>"Run startup guide"</td>
<td>●</td>
<td>●</td>
<td>"Run startup guide"</td>
<td>60</td>
</tr>
</tbody>
</table>
Grundfos GO

The pump is designed for wireless radio or infrared communication with Grundfos GO. Grundfos GO enables setting of functions and gives access to status overviews, technical product information and actual operating parameters. Grundfos GO offers the following mobile interfaces, MI.

![Fig. 16 Grundfos GO communicating with the pump via radio or infrared connection, IR](image)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Grundfos MI 204:
Add-on module enabling radio or infrared communication.
You can use MI 204 in conjunction with an Apple iPhone or iPod with Lightning connector, for example, fifth generation or later iPhone or iPod.
MI 204 is also available together with an Apple iPod touch and a cover. |
| 2 | Grundfos MI 301:
Separate module enabling radio or infrared communication.
You can use the module in conjunction with an Android or iOS-based smart device with Bluetooth connection. |

Communication

When Grundfos GO initiates communication with the pump, the indicator light in the middle of Grundfos Eye flashes green. See *Grundfos Eye* on page 67. Furthermore, on pumps fitted with an advanced control panel a text appears in the display saying that a wireless device is trying to establish connection. Press OK on the pump in order to establish connection with Grundfos GO or press 🏡 to reject connection.

Establish communication using one of these communication types:
- radio communication
- infrared communication.

Radio communication

Radio communication can take place at distances up to 30 metres. The first time Grundfos GO communicates with the pump, you must enable communication by pressing 📡 or 📡 on the pump control panel. Later when communication takes place, the pump is recognized by Grundfos GO, and you can select the pump from the “List” menu.

Infrared communication

When communicating via infrared light, Grundfos GO must be pointed at the pump control panel.
Menu overview for Grundfos GO

Main menus

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>TPE2, TPE3 D</th>
<th>TPE2, TPE3 D</th>
<th>Multipump system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>TPE2, TPE3 D</th>
<th>TPE2, TPE3 D</th>
<th>Multipump system</th>
</tr>
</thead>
<tbody>
<tr>
<td>"System mode"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Resulting setpoint"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Resulting system setpoint"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Actual controlled value"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Sensor value"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Motor speed (rpm, %)"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Power consumption"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Power consumption, system"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Energy consumption"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Energy consumption, system"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Acc. flow, specific energy"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Operating hours, system"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Operating hours"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Motor current"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Number of starts"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Liquid temperature"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog input 1"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog input 2"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog input 3"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pt100/1000 input 1"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pt100/1000 input 2"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog output"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Digital input 1"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Digital input 2"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Digital in/output 3"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Digital in/output 4"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Motor bearing service"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Fitted modules"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Trend data"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Heat energy monitor"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pump1"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pump2"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pump3"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pump4"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Settings</td>
<td>TPE2, TPE2 D</td>
<td>TPE3, TPE3 D</td>
<td>Multipump system</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>"Setpoint"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Operating mode"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Set user-defined speed"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Control mode"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Proportional-pressure setup"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Flow limit"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Automatic night setback"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Temperature influence"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Buttons on product"</td>
<td>● ● ●</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>"Controller"</td>
<td>● ● ●</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>"Operating range"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Ramps"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Number"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Radio communication"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Analog input 1"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog input 2"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Analog input 3"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Built-in Grundfos sensor"</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>"Pt100/1000 input 1"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Pt100/1000 input 2"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Digital input 1"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Digital input 2"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Digital in/output 3"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Digital in/output 4"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Pulse flowmeter"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Predefined setpoint"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Analog output"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"External setpoint funct."</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Signal relay 1"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Signal relay 2"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Limit 1 exceeded"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Limit 2 exceeded"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Alternating operation, time"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Standstill heating"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Motor bearing monitoring"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Service"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Date and time"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Store settings"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Recall settings"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Undo"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Pump name"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Connection code"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>"Unit configuration"</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
User interfaces for TPE pumps

Alarms and warnings

<table>
<thead>
<tr>
<th></th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Multipump system</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Alarm log"</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>"Alarm log"</td>
<td>61</td>
</tr>
<tr>
<td>"Warning log"</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>"Warning log"</td>
<td>61</td>
</tr>
<tr>
<td>"Reset alarm" button</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assist

<table>
<thead>
<tr>
<th></th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Multipump system</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Assisted pump setup"</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>"Assisted pump setup"</td>
<td>61</td>
</tr>
<tr>
<td>"Assisted fault advice"</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>"Setup, analog input"</td>
<td>62</td>
</tr>
<tr>
<td>"Multipump setup"</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>"Multipump setup" ("Setup of multi-pump system")</td>
<td>62</td>
</tr>
</tbody>
</table>
Description of selected functions

"Heat energy monitor"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Heat energy monitor"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>-</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

The heat energy monitor is a monitoring function that calculates the heat energy consumption within a system. The built-in flow estimation needed for the calculation has an inaccuracy of ± 10 % of the maximum flow rate in the area down to 10 % flow and down to 12.5 % of the maximum head. The calculations are based on water at a temperature of 68 °F (20 °C). Also, the temperature measurements needed for the calculation have some inaccuracy depending on the sensor type. Therefore, you cannot use the heat energy value for billing purposes. However, the value is perfect for optimization purposes in order to prevent excessive energy costs caused by system imbalances.

The heat energy monitor requires an additional temperature sensor installed in the flow pipe or return pipe depending on where the pump is installed. Use the analog inputs and/or Pt100/1000 inputs for measuring the temperatures used for calculation by the heat energy monitor.

The used inputs must not be set to "Not active" and one of the measuring parameters must be set to "Temperature 2".

Pump variant "Setpoint"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Setpoint"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>-</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

You can set the setpoint for all control modes, except AUTO\textsubscript{ADAPT} and FLOW\textsubscript{ADAPT}, in this submenu when you have selected the desired control mode. See "Control mode" on page 36.

Factory setting

Fig. 17 Example: Pump installed in the flow pipe, and additional temperature sensor installed in the return pipe
"Operating mode"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Operating mode"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Possible operating modes:
- "Normal"
 The pump runs according to the selected control mode.
- "Stop"
 The pump stops.
- "Min."
 Use the minimum-curve mode in periods where a minimum flow is required. This operating mode is, for instance, suitable for manual night setback if you do not want to use automatic night setback.
- "Max."
 Use the maximum-curve mode in periods where a maximum flow is required. This operating mode is, for instance, suitable for hot-water priority.
- "Manual"
 The pump is operating at a manually set speed. In "Manual" the setpoint via bus is overruled. See "Set manual speed" on page 36.
- "User-defined speed"
 The motor is operating at a speed set by the user. See "Set user-defined speed" on page 36.

All operating modes are illustrated in the fig. 18.

Fig. 18 Operating modes

Factory setting

"Set manual speed"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Set manual speed"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel. With Grundfos GO, you set the speed via the "Setpoint" menu.
You can set the pump speed in % of the maximum speed. When you have set the operating mode to "Manual", the pump starts running at the set speed. The speed can then be changed manually via Grundfos GO or via the advanced control panel.

"Set user-defined speed"

You can set the motor speed in % of the maximum speed. When you have set the operating mode to "User-defined speed", the motor runs at the set speed.

"Control mode"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Control mode"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Note: Not all control modes are available for all pump variants.
Possible control modes:
- "AUTO\(\text{ADAPT}\)"
- "FLOW\(\text{ADAPT}\)"
- "Prop. press." (proportional pressure)
- "Const. pressure" (constant pressure)
- "Const. temp." (constant temperature)
- "Con. diff. press." (constant differential pressure)
- "Con. diff. temp." (constant differential temperature)
- "Const. flow rate" (constant flow rate)
- "Const. level" (constant level)
- "Const. other val." (constant other value)
- "Const. curve" (constant curve).

You can change the setpoint for all control modes, except AUTO\(\text{ADAPT}\) and FLOW\(\text{ADAPT}\), in the "Setpoint" submenu under "Settings" when you have selected the desired control mode.

Factory setting
The AUTO_ADAPT control mode continuously adapts the pump performance according to the actual system characteristic. Manual setting of the setpoint is not possible.

When the AUTO_ADAPT control mode has been enabled, the pump will start with the factory setting, H_{fac}, equal to H_{set1}, and then adjust its performance to A_1. See fig. 19.

When the pump registers a lower head on the maximum curve, A_2, the AUTO_ADAPT function automatically selects a correspondingly lower control curve, H_{set2}. If the valves in the system close, the pump adjusts its performance to A_3.

A_1: Original duty point.
A_2: Lower registered head on the maximum curve.
A_3: New duty point after AUTO_ADAPT control.
H_{set1}: Original setpoint setting.
H_{set2}: New setpoint after AUTO_ADAPT control.
H_{fac}: Factory setting.
H_{auto_min}: A fixed value of 1.5 m.

The AUTO_ADAPT control mode is a form of proportional-pressure control where the control curves have a fixed origin, H_{auto_min}.

The AUTO_ADAPT control mode has been developed specifically for heating systems, and we do not recommend that you use it for air-conditioning and cooling systems.

When you select FLOW_ADAPT, the pump runs AUTO_ADAPT and ensures that the flow rate never exceeds the entered FLOW_{LIMIT} value.

The setting range for FLOW_{LIMIT} is 25 to 90 % of the maximum flow rate of the pump.

The factory setting of the FLOW_{LIMIT} is the flow rate where the AUTO_ADAPT factory setting meets the maximum curve. See fig. 20.
User interfaces for TPE pumps

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Proportional pressure"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

The head of the pump is reduced at decreasing water demand and increased at rising water demand. See fig. 21.

This control mode is especially suitable in systems with relatively large pressure losses in the distribution pipes. The head of the pump increases proportionally to the flow in the system to compensate for the large pressure losses in the distribution pipes.

You can set the setpoint with an accuracy of 0.1 m. The head against a closed valve is half the setpoint.

For more information about settings, see "Proportional-pressure setup" on page 43.

Fig. 21 "Proportional pressure"

Example
- Factory-fitted differential-pressure sensor.

Controller settings
For recommended controller settings, see "Controller" ("Controller settings") on page 50.

"Constant pressure"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Constant pressure"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

We recommend this control mode if the pump is to deliver a constant pressure, independently of the flow in the system. The pump maintains a constant pressure independently of the flow rate. See fig. 23.

Fig. 23 "Constant pressure"

This control mode requires an external pressure sensor as shown in the examples below. You can set the pressure sensor in the "Assist" menu. See "Assisted pump setup" on page 61.

Examples
- One external pressure sensor.

Controller settings
For recommended controller settings, see "Controller" ("Controller settings") on page 50.
"Constant temperature"

This control mode ensures a constant temperature. Constant temperature is a comfort control mode that you can use in domestic hot-water systems to control the flow rate to maintain a fixed temperature in the system. See fig. 25.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Constant temperature"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This control mode requires either an internal or external temperature sensor as shown in the examples below.

Examples

- Factory-fitted temperature sensor. Only TPE3, TPE3 D.

- One external temperature sensor.

Fig. 26 "Constant temperature"

Controller settings

For recommended controller settings, see "Controller" ("Controller settings") on page 50.

"Constant differential pressure"

The pump maintains a constant differential pressure, independently of the flow rate in the system. See fig. 27. This control mode is primarily suitable for systems with relatively small pressure losses.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Constant differential pressure"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This control mode requires either an internal or external differential-pressure sensor or two external pressure sensors. See the examples below.
Examples

- One external differential-pressure sensor. The pump uses the input from the sensor to control the differential pressure. You can set the sensor manually or by using the "Assist" menu. See "Assisted pump setup" on page 61.

- Two external pressure sensors. Constant differential-pressure control is achievable with two pressure sensors. The pump uses the inputs from the two sensors and calculates the differential pressure. The sensors must have the same unit and must be set as feedback sensors. You can set the sensors manually, sensor by sensor, or by using the "Assist" menu. See "Assisted pump setup" on page 61.

Controller settings

For recommended controller settings, see "Controller" ("Controller settings") on page 50.

"Constant differential temperature"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Constant differential temperature"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

The pump maintains a constant differential temperature in the system, and the pump performance is controlled according to this. See fig. 29.

This control mode requires either two temperature sensors or one external differential-temperature sensor. See the examples below.

The temperature sensors can either be analog sensors connected to two of the analog inputs or two Pt100/Pt1000 sensors connected to the Pt100/1000 inputs, if these are available on the specific pump.

Set the sensor in the "Assist" menu under "Assisted pump setup". See "Assisted pump setup" on page 61.
Examples

- Factory-fitted temperature sensor and an external temperature sensor. Only TPE3, TPE3 D.

- Two external temperature sensors. Not available for TPE 15-22 kW 2-pole and 11 - 18.5 kW 4-pole. Constant differential-temperature control is achievable with two temperature sensors. The pump uses the inputs from the two sensors and calculates the differential temperature. The sensors must have the same unit and must be set as feedback sensors. You can set the sensors manually, sensor by sensor, or by using the "Assist" menu. See "Assisted pump setup" on page 61.

- One external differential-temperature sensor. The pump uses the input from the sensor to control the differential temperature. You can set the sensor manually or by using the "Assist" menu. See "Assisted pump setup" on page 61.

Fig. 30 Constant differential temperature

Controller settings

For recommended controller settings, see "Controller" ("Controller settings") on page 50.

"Constant flow rate"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Constant flow rate"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

The pump maintains a constant flow rate in the system, independently of the head. See fig. 31.

Fig. 31 Constant flow rate

This control mode requires an external flow sensor. See the example below.

Example

- One external flow sensor.

Fig. 32 Constant flow rate

Controller settings

For recommended controller settings, see "Controller" ("Controller settings") on page 50.
"Constant level"

The pump maintains a constant level, independently of the flow rate. See fig. 33.

This control mode requires an external level sensor. The pump can control the level in a tank in two ways:
- As an emptying function where the pump draws the liquid from the tank.
- As a filling function where the pump pumps the liquid into the tank.

See fig. 34.

The type of level control function depends on the setting of the built-in controller. See "Controller ("Controller settings") on page 50.

Examples
- One external level sensor.
 - emptying function.
- One external level sensor.
 - filling function.

Controller settings
For recommended controller settings, see "Controller ("Controller settings") on page 50.

"Constant other value"

Any other value is kept constant.
Use this control mode if you want to control a value which is not available in the "Control mode" menu. Connect a sensor measuring the controlled value to one of the analog inputs of the pump. The controlled value will be shown in percentage of sensor range.

Constant curve

You can set the pump to operate according to a constant curve, like an uncontrolled pump. See fig. 35.

You can set the desired speed in % of maximum speed in the range from 13 to 100 %.

Examples
- One external level sensor.
 - emptying function.
- One external level sensor.
 - filling function.
Depending on the system characteristic and the duty point, the 100 % setting may be slightly smaller than the actual maximum curve of the pump even though the display shows 100 %. This is due to the power and pressure limitations built into the pump. The deviation varies according to pump type and pressure loss in the pipes.

Controller settings

For recommended controller settings, see "Controller" ("Controller settings") on page 50.

"Proportional-pressure setup"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Proportional-pressure setup"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>•</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

"Control-curve function"

You can set the curve either to quadratic or linear.

"Zero-flow head"

You can set this value in % of the setpoint. With a setting of 100 %, the control mode is equal to constant differential pressure.

"FLOW_LIMIT"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"FLOW_LIMIT"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>•</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

FLOW_LIMIT

- Enable the FLOW_LIMIT function.
- Set the FLOW_LIMIT.

You can combine the FLOW_LIMIT function with the following control modes:
- Proportional pressure
- Constant differential pressure
- Constant differential temperature
- Constant temperature
- Constant curve.

A flow-limiting function ensures that the flow rate never exceeds the entered FLOW_LIMIT value.

The setting range for FLOW_LIMIT is 25 % to 90 % of the Q_max of the pump.

The factory setting of the FLOW_LIMIT is the flow rate where the AUTO_ADAPT factory setting meets the maximum curve. See fig. 20.
"Automatic night setback"

Once you have enabled automatic night setback, the pump automatically changes between normal duty and night setback, duty at low performance. Changeover between normal duty and night setback depends on the flow-pipe temperature. The pump automatically changes over to night setback when the built-in sensor registers a flow-pipe temperature drop of more than 10 to 15 °C within approximately two hours. The temperature drop must be at least 0.1 °C/min. Changeover to normal duty takes place without a time lag when the temperature has increased by approximately 10 °C.

Note: You cannot enable automatic night setback when the pump is in constant-curve mode.

"Analog inputs"

Function Terminals*
"Analog input 1, setup" 4
"Analog input 2, setup" 7
"Analog input 3, setup" 14

* See Connection terminals, advanced functional module, FM 300 on page 82.

Set the analog input for a feedback sensor via the "Assisted pump setup" menu. See "Assisted pump setup" on page 61.

If you want to set an analog input for other purposes, you can do this manually. You can set the analog inputs via the "Setup, analog input" menu. See "Setup, analog input" on page 62.

If you perform the manual setting via Grundfos GO, you need to enter the menu for the analog input under the "Settings" menu.

Function
You can set the analog inputs to these functions:
- "Not active"
- "Feedback sensor"
- "Ext. setpoint infl."
 See "External setpoint influence" on page 52.
- "Other function".

Measured parameter
Select one of the parameters: the parameter to be measured in the system by the sensor connected to the actual analog input. See fig. 38.

Sensor function, measured parameter Pos.
"Inlet pressure" 1
"Diff. press., inlet" 2
"Liquid temp." 3
"Diff. press., outlet" 4
"Diff. press., pump" 5
"Operating mode" 6
"Press. 2, external" 7
"Diff. press., ext." 8
"Storage tank level" 9
"Feed tank level" 10
"Pump flow" 11
"Flow, external" 12
"Liquid temp." 13
"Temperature 1" 14
"Temperature 2" 15
"Diff. temp., ext." 16
"Ambient temp." Not shown
"Other parameter" Not shown

"Unit"
Available measuring units:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible measuring units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>bar, m, kPa, psi, ft</td>
</tr>
<tr>
<td>Level</td>
<td>m, ft, in</td>
</tr>
<tr>
<td>"Flow rate"</td>
<td>m³/h, l/s, yd³/h, gpm</td>
</tr>
<tr>
<td>"Liquid temp."</td>
<td>°C, °F</td>
</tr>
<tr>
<td>"Other parameter"</td>
<td>%</td>
</tr>
</tbody>
</table>
Electrical signal
Select signal type:
- "0.5 - 3.5 V"
- "0-5 V"
- "0-10 V"
- "0-20 mA"
- "4-20 mA".

Sensor range, minimum value
Set the minimum value of the connected sensor.

Sensor range, maximum value
Set the maximum value of the connected sensor.

Factory setting

Setting two sensors for differential measurement
In order to measure the difference of a parameter between two points, set the corresponding sensors as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analog input for sensor 1</th>
<th>Analog input for sensor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure, option 1</td>
<td>Differential pressure, inlet</td>
<td>Differential pressure, outlet</td>
</tr>
<tr>
<td>Pressure, option 2</td>
<td>Pressure 1, external</td>
<td>Pressure 2, external</td>
</tr>
<tr>
<td>Flow</td>
<td>Pump flow</td>
<td>Flow, external</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature 1</td>
<td>Temperature 2</td>
</tr>
</tbody>
</table>

If you want to use the control mode "constant differential pressure", you must choose the function "Feedback sensor" for the analog input of both sensors.

"Built-in Grundfos sensor"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Built-in Grundfos sensor"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>-</td>
</tr>
</tbody>
</table>

You can select the function of the built-in sensor in the "Built-in Grundfos sensor" menu. Set the "Built-in Grundfos sensor" via the "Assisted pump setup" menu. See "Assisted pump setup" on page 61.

If you perform the setting manually in the advanced control panel, you must enter the "Analog inputs" menu under the "Settings" menu in order to access the "Built-in Grundfos sensor" menu.

If you perform the setting manually via Grundfos GO, you need to enter the menu for the "Built-in Grundfos sensor" under the "Settings" menu.

Function
You can set the built-in sensor to these functions:
- "Grundfos diff.-pressure sensor"
 - "Not active"
 - "Feedback sensor"
 - "Setpoint influence"
 - "Other function".
- "Grundfos temperature sensor"
 - "Not active"
 - "Feedback sensor"
 - "Setpoint influence"
 - "Other function".

Factory setting
"Pt100/1000 inputs"

Set the Pt100/1000 input for a feedback sensor via the "Assisted pump setup" menu. See "Assisted pump setup" on page 61.

If you want to set a Pt100/1000 input for other purposes, you can do this manually. You can set the analog inputs via the "Setup, analog input" menu. See "Setup, analog input" on page 62.

If you perform the manual setting via Grundfos GO, you need to enter the menu for the Pt100/1000 input under the "Settings" menu.

Function
You can set the Pt100/1000 inputs to these functions:
- "Not active"
- "Feedback sensor"
- "Ext. setpoint infl.
 See "External setpoint influence" on page 52.
- "Other function".

Measured parameter
Select one of the parameters, such as the parameter to be measured in the system by the Pt100/1000 sensor connected to the actual Pt100/1000 input. See fig. 39.

![Fig. 39 Overview of Pt100/1000 sensor locations](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Liquid temp."</td>
<td>1</td>
</tr>
<tr>
<td>"Temperature 1"</td>
<td>2</td>
</tr>
<tr>
<td>"Temperature 2"</td>
<td>3</td>
</tr>
<tr>
<td>"Ambient temp."</td>
<td>Not shown</td>
</tr>
</tbody>
</table>

Measuring range
-50 to +204 °C.

Factory setting

"Digital inputs"

To set a digital input, make the settings below.

Function
Select one of these functions:
- "Not active"
 When set to "Not active", the input has no function.
- "External stop"
 When the input is deactivated, open circuit, the pump stops.
- "Min.", minimum speed
 When the input is activated, the pump runs at the set minimum speed.
- "Max.", maximum speed
 When the input is activated, the pump runs at the set maximum speed.
- "User-defined speed"
 When the input is activated, the motor runs at a speed set by the user.
- "External fault"
 When the input is activated, a timer starts. If the input is activated for more than 5 seconds, the pump stops and a fault is indicated. This function depends on input from external equipment.
- "Alarm resetting"
 When the input is activated, a possible fault indication is reset.
- "Dry running"
 When this function has been selected, lack of inlet pressure or water shortage can be detected. When lack of inlet pressure or water shortage, dry running, is detected, the pump stops. The pump cannot restart as long as the input is activated. This requires the use of an accessory, such as these:
 - a pressure switch installed on the inlet side of the pump
 - a float switch installed on the inlet side of the pump.

<table>
<thead>
<tr>
<th>Function</th>
<th>Terminals*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Digital input 1, setup"</td>
<td>2 and 6</td>
</tr>
<tr>
<td>"Digital input 2, setup"</td>
<td>1 and 9</td>
</tr>
</tbody>
</table>

* See Connection terminals, advanced functional module, FM 300 on page 82.
User interfaces for TPE pumps

- "Accumulated flow"
 When this function has been selected, the accumulated flow rate can be registered. This requires the use of a flowmeter which can give a feedback signal as a pulse per defined flow of water.
 See "Pulse flowmeter setup" on page 56.
- "Predefined setpoint digit 1", applies only to digital input 2
 When digital inputs are set to a predefined setpoint, the pump operates according to a setpoint based on the combination of the activated digital inputs.
 See "Predefined setpoints" on page 54.

The priority of the selected functions in relation to each other appears from section Priority of settings on page 66.

A stop command always has the highest priority.

Activation delay

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>Activation delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>-</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Select the activation delay, T1.

It is the time between the digital signal and the activation of the selected function.

Range: 0 to 6000 seconds.

Duration timer mode

Select the mode. See fig. 40.
- "Not active"
- active with interrupt, mode A
- active without interrupt, mode B
- active with after-run, mode C.

Select the duration time, T2.

It is the time which, together with the mode, determines how long the selected function is active.

Range: 0 to 15,000 seconds.

Fig. 40 Duration timer function of digital inputs

Factory setting

To set a digital input or output, make the settings below.

Mode
You can set the digital input or output 3 and 4 to act as digital input or digital output:
- "Digital input"
- "Digital output".

Function
You can set the digital input or output 3 and 4 to the functions mentioned below.

Possible functions, digital input or output 3

Function if input
See details in section "Digital inputs" on page 46
- "Not active"
- "External stop"
- "Min."
- "Max."
- "User-defined speed"
- "External fault"
- "Alarm resetting"
- "Dry running"
- "Accumulated flow"
- "Predefined setpoint 2"

Function if output
See details in section "Signal relays 1 and 2" ("Relay outputs") on page 48
- "Not active"
- "Ready"
- "Alarm"
- "Operation"
- "Pump running"
- "Warning"
- "Limit 1 exceeded"
- "Limit 2 exceeded"

Possible functions, digital input or output 4

Function if input
See details in section "Digital inputs" on page 46
- "Not active"
- "External stop"
- "Min."
- "Max."
- "User-defined speed"
- "External fault"
- "Alarm resetting"
- "Dry running"
- "Accumulated flow"
- "Predefined setpoint 3"

Function if output
See details in section "Signal relays 1 and 2" ("Relay outputs") on page 48
- "Not active"
- "Ready"
- "Alarm"
- "Operation"
- "Pump running"
- "Warning"
- "Limit 1 exceeded"
- "Limit 2 exceeded"

Activation delay

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>Activation delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>-</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Select the activation delay, T1.
It is the time between the digital signal and the activation of the selected function.
Range: 0 to 6000 seconds.

Duration timer mode
Select the mode. See fig. 42.
- "Not active"
- active with interrupt, mode A
- active without interrupt, mode B
- active with after-run, mode C.
Select the duration time, T2.
It is the time which, together with the mode, determines how long the selected function is active.
Range: 0 to 15,000 seconds.

![Fig. 42 Duration timer function of digital inputs](image)

Factory setting

"Signal relays 1 and 2" ("Relay outputs")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>Signal relay 1</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Terminals*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output 1*</td>
<td>NC, C1, NO</td>
</tr>
<tr>
<td>Relay output 2*</td>
<td>NC, C2, NO</td>
</tr>
</tbody>
</table>

* See Connection terminals, advanced functional module, FM 300 on page 82.

The pump incorporates two signal relays for potential-free signalling. For further information, see Indicator lights and signal relays on page 68.
Function
You can configure the signal relays to be activated by one of the following incidents:
- "Not active".
- "Ready" The pump can be running or is ready to run and no alarms are present.
- "Alarm" There is an active alarm and the pump is stopped.
- "Operating" ("Operation") "Operating" equals "Running" but the pump is still in operation when it has been stopped due to a warning.
- "Running" ("Pump running")
- "Warning" There is an active warning.
- "Limit 1 exceeded" When the "Limit 1 exceeded" function is activated, the signal relay is activated. See "Limit-exceeded function" on page 55.
- "Limit 2 exceeded" When the "Limit 2 exceeded" function is activated, the signal relay is activated. See "Limit-exceeded function" on page 55.
- "Relubricate"
- "External fan control" ("Control of external fan") When you select "External fan control", the relay is activated if the internal temperature of the motor electronics reach a preset limit value.

* This function is only available for TPE3, TPE2, TPE Series 2000 and TPE Series 1000 pumps with motor sizes from 0.12 to 11 kW, 2-pole and 0.12 - 7.5 kW, 4-pole.

Factory setting

"Analog output"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Analog output"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Terminals*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Analog output"</td>
<td>12</td>
</tr>
</tbody>
</table>

* See Connection terminals, advanced functional module, FM 300 on page 82.

The analog output enables the transfer of certain operating data to external control systems.
To set the analog output, make the settings below.

"Output signal"
- "0-10 V"
- "0-20 mA"
- "4-20 mA".

"Function of analog output"
- "Actual speed"
- "Actual value"
- "Resulting setpoint"

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Actual speed" [%]</th>
<th>"Actual value"</th>
<th>"Resulting setpoint" [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 V</td>
<td>0 V</td>
<td>Sensor_{min}</td>
<td>0 %</td>
</tr>
<tr>
<td>0-20 mA</td>
<td>0 mA</td>
<td>Sensor_{max}</td>
<td>100 %</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 mA</td>
<td>Sensor_{max}</td>
<td>200 %</td>
</tr>
</tbody>
</table>

The reading is a percentage of nominal speed.

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Actual value"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 V</td>
<td>0 V</td>
</tr>
<tr>
<td>0-20 mA</td>
<td>0 mA</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 mA</td>
</tr>
</tbody>
</table>

The reading is a percentage of the range between sensor_{min} and sensor_{max}.

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Resulting setpoint" [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 V</td>
<td>0 V</td>
</tr>
<tr>
<td>0-20 mA</td>
<td>0 mA</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 mA</td>
</tr>
</tbody>
</table>

The reading is a percentage of the external setpoint range.
User interfaces for TPE pumps

- "Motor load"

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Motor load" [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 V</td>
<td>0 V 10 V</td>
</tr>
<tr>
<td>0-20 mA</td>
<td>0 mA 20 mA</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 mA 20 mA</td>
</tr>
</tbody>
</table>

The reading is a percentage of the range between 0 and 200 % of the maximum permissible load at the actual speed.

- "Motor current"

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Motor current" [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 V</td>
<td>0 V 5 V 10 V</td>
</tr>
<tr>
<td>0-20 mA</td>
<td>0 mA 10 mA 20 mA</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 mA 12 mA 20 mA</td>
</tr>
</tbody>
</table>

The reading is a percentage of the range between 0 and 200 % of the rated current.

- "Limit 1 exceeded" and "Limit 2 exceeded"

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Limit-exceed function"</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0-10 V"</td>
<td>0 V 10 V</td>
</tr>
<tr>
<td>"0-20 mA"</td>
<td>0 mA 20 mA</td>
</tr>
<tr>
<td>"4-20 mA"</td>
<td>4 mA 20 mA</td>
</tr>
</tbody>
</table>

The "Limit-exceeded function" is typically used for monitoring of secondary parameters in the system. If the limit is exceeded, an output, warning or alarm is activated.

- "Flow rate"

<table>
<thead>
<tr>
<th>Signal range [V, mA]</th>
<th>"Flow rate" [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0-10 V"</td>
<td>0 V 5 V 10 V</td>
</tr>
<tr>
<td>"0-20 mA"</td>
<td>0 mA 10 mA 20 mA</td>
</tr>
<tr>
<td>"4-20 mA"</td>
<td>4 mA 12 mA 20 mA</td>
</tr>
</tbody>
</table>

The reading is a percentage of the range between 0 and 200 % of the nominal flow.

Factory setting

"Controller" ("Controller settings")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Controller settings"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>0.5 0.5</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>0.5 0.5</td>
</tr>
</tbody>
</table>

The pumps have a factory default setting of gain, K_p, and integral time, T_i.

However, if the factory setting is not the optimum setting, you can change the gain and the integral time:

- Set the gain within the range from 0.1 to 20.
- Set the integral time within the range from 0.1 to 3600 seconds.

If you select 3600 seconds, the controller functions as a P controller.

Furthermore, you can set the controller to inverse control. This means that if the setpoint is increased, the speed is reduced. In the case of inverse control, set the gain within the range from -0.1 to -20.

Guidelines for setting of PI controller

The tables below show the recommended controller settings:

<table>
<thead>
<tr>
<th>"Differential-pressure control"</th>
<th>K_p</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

L1: Distance in meters between pump and sensor.
In heating systems, an increase in pump performance results in a rise in temperature at the sensor. In cooling systems, an increase in pump performance results in a drop in temperature at the sensor.

L2: Distance in meters between heat exchanger and sensor.

“Temperature control”

<table>
<thead>
<tr>
<th>System</th>
<th>KP</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating system</td>
<td>0.5</td>
<td>10 + 5L2</td>
</tr>
<tr>
<td>Cooling system</td>
<td>-0.5</td>
<td></td>
</tr>
</tbody>
</table>

“Differential-temperature control”

<table>
<thead>
<tr>
<th>System</th>
<th>KP</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.5</td>
<td>10 + 5L2</td>
</tr>
</tbody>
</table>

“Flow control”

<table>
<thead>
<tr>
<th>System</th>
<th>KP</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

“Constant-pressure control”

<table>
<thead>
<tr>
<th>System</th>
<th>KP</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

“Level control”

<table>
<thead>
<tr>
<th>System</th>
<th>KP</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5</td>
<td>100</td>
</tr>
</tbody>
</table>

Rules of thumb

- If the controller is too slow-reacting, increase the gain.
- If the controller is hunting or unstable, dampen the system by reducing the gain or increasing the integral time.

Factory setting

“Operating range”

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>“Operating range”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td></td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td></td>
</tr>
</tbody>
</table>

Set the operating range as follows:

- Set the minimum speed within the range from fixed minimum speed to user-set maximum speed.
- Set the maximum speed within the range from user-set minimum speed to fixed maximum speed.

The range between the user-set minimum and maximum speeds is the operating range. See fig. 43.

Note: Speeds below 25% may result in noise from the shaft seal.

Fig. 43 Example of minimum and maximum settings

Factory setting

"External setpoint influence"

You can influence the setpoint by an external signal, either via one of the analog inputs or, if an advanced functional module is fitted, via one of the Pt100/1000 inputs.

Note: Before you can enable the "External setpoint function", set one of the analog inputs or Pt100/1000 inputs to "Setpoint influence".

See "Analog inputs" on page 44 and "Pt100/1000 inputs" on page 46.

If more than one input has been set to "Setpoint influence", the function selects the analog input with the lowest number, for example, "Analog input 2", and ignores the other inputs, for example, "Analog input 3" or "Pt100/1000 input 1".

Example with constant pressure with linear influence

Actual setpoint: actual input signal \(x \) (setpoint - sensor min.) + sensor min.

At a lower sensor value of 0 bar, a setpoint of 2 bar and an external setpoint of 60 %, the actual setpoint is \(0.60 \times (2 - 0) + 0 = 1.2 \) bar.

Example with constant curve with linear influence

Actual setpoint: actual input signal \(x \) (setpoint - user-set minimum speed) + user-set minimum speed.

At a user-set minimum speed of 25 %, a setpoint of 85 % and an external setpoint of 60 %, the actual setpoint is \(0.60 \times (85 - 25) + 25 = 61 \) %.

In some cases, the maximum curve is limited to a lower speed. See fig. 45.

Factory setting

"Setpoint influence"

The table below gives an overview of the types of setpoint influence and the availability depending on pump type.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Setpoint influence"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

The table below gives an overview of the types of setpoint influence and the availability depending on pump type.

<table>
<thead>
<tr>
<th>Type of setpoint influence</th>
<th>Pump type</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Not active"</td>
<td>●</td>
</tr>
<tr>
<td>"Linear function"</td>
<td>●</td>
</tr>
<tr>
<td>"Linear with Stop"</td>
<td>●</td>
</tr>
<tr>
<td>"Influence table"</td>
<td>●</td>
</tr>
</tbody>
</table>

Fig. 44 Example of setpoint influence with sensor feedback

Fig. 45 Example of setpoint influence with constant curve
You can select these functions:

- **"Not active"**
 When set to "Not active", the setpoint is not influenced from any external function.

- **"Linear function"**
 The setpoint is influenced linearly from 0 to 100 %.
 See fig. 46.

![Fig. 46 "Linear function"]()

- **"Linear with Stop"**
 In the input signal range from 20 to 100 %, the setpoint is influenced linearly.
 If the input signal is below 10 %, the pump changes to operating mode "Stop".
 If the input signal is increased above 15 %, the operating mode is changed back to "Normal".
 See fig. 47.

![Fig. 47 "Linear with Stop"]()

- **"Influence table"**
 The setpoint is influenced by a curve made out of two to eight points. There will be a straight line between the points and a horizontal line before the first point and after the last point.

"Setpoint influence" [%]

!["Influence table", example with five points](image)
"Predefined setpoints"

You can set and activate seven predefined setpoints by combining the input signals to digital inputs 2, 3 and 4 as shown in the table below.

Set the digital inputs 2, 3 and 4 to "Predefined setpoints" if all seven predefined setpoints are to be used. You can also set one or two of the digital inputs to "Predefined setpoints", but this will limit the number of predefined setpoints available.

Example

Figure 49 shows how you can use the digital inputs to set seven predefined setpoints. Digital input 2 is open and digital inputs 3 and 4 are closed. If you compare with the table above, you can see that "Predefined setpoint 6" is activated.

"Temperature influence"

When this function is enabled in proportional- or constant-pressure control mode, the setpoint for head is reduced according to the liquid temperature.

You can set the temperature influence to function at liquid temperatures below 176 or 122 °F (80 or 50 °C). These temperature limits are called T_{max}. The setpoint is reduced in relation to the head set which is equal to 100 % according to the characteristics below.

Figure 50 "Temperature influence"

In the above example, T_{max} which is equal to 122 °F (80 °C), has been selected. The actual liquid temperature, T_{actual}, causes the setpoint for head to be reduced from 100 % to H_{actual}.

The temperature influence function requires the following:

- proportional-pressure or constant-pressure control mode
- pump installed in flow pipe
- system with flow-pipe temperature control.

Temperature influence is suitable for the following systems:

- Systems with variable flows, for example two-pipe heating systems, in which the enabling of the temperature influence function ensures a further reduction of the pump performance in periods with small heating demands and consequently a reduced flow-pipe temperature.
- Systems with almost constant flows, for example one-pipe heating systems and underfloor heating systems, in which variable heating demands cannot be registered as changes in the head as it is the case with two-pipe heating systems. In such systems, you can only adjust the pump performance by enabling the temperature influence function.
Selection of the maximum temperature
In systems with a dimensioned flow-pipe temperature of:
 • up to and including 131 °F (55 °C), select $T_{\text{max.}}$ equal to 122 °F (50 °C).
 • above 131 °F (55 °C), select $T_{\text{max.}}$ equal to 176 °F (80 °C).

Note: You cannot use the temperature function in air-conditioning and cooling systems.

Factory setting

"Limit-exceeded function"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Limit-exceeded function"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This function can monitor a measured parameter or one of the internal values such as speed, motor load or motor current. If a set limit is reached, a selected action can take place. You can set two limit-exceeded functions meaning that you can monitor two parameters or two limits of the same parameter simultaneously.

The function requires setting of the following:

Measured
Here you set the measured parameter to be monitored.

"Limit"
Here you set the limit which activates the function.

"Hysteresis band"
Here you set the hysteresis band.

"Limit exceeded when"
Here you can set if you want the function to be activated when the selected parameter exceeds or drops below the set limit.
 • "Above limit"
 The function is activated if the measured parameter exceeds the set limit.
 • "Below limit"
 The function is activated if the measured parameter drops below the set limit.

Action
If the value exceeds a limit, you can define an action. You can select the following actions:
 • "No action"
 The pump remains in its current state. Use this setting if you only want to have a relay output when the limit is reached. See "Signal relays 1 and 2" ("Relay outputs") on page 48.
 • "Warning/alarm"
 There is a warning.
 • "Stop"
 The pump stops.
 • "Min."
 The pump reduces speed to minimum.
 • "Max."
 The pump increases speed to maximum.
 • "User-defined speed"
 The pump runs at a speed set by the user.

"Detection delay"
You can set a detection delay which ensures that the monitored parameter stays above or below a set limit in a set time before the function is activated.

"Resetting delay"
The resetting delay is the time from which the measured parameter differs from the set limit including the set hysteresis band and until the function is reset.
Example
The function is to monitor the outlet pressure of a pump. If the pressure is below 5 bar for more than 5 seconds, a warning must be given. If the outlet pressure is above 7 bar for more than 8 seconds, you must reset the warning.

Fig. 51 Limit exceeded (example)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Setting parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured</td>
<td>Outlet pressure</td>
</tr>
<tr>
<td>2</td>
<td>"Limit"</td>
<td>5 bar</td>
</tr>
<tr>
<td>3</td>
<td>"Hysteresis band"</td>
<td>2 bar</td>
</tr>
<tr>
<td>4</td>
<td>"Limit exceeded when"</td>
<td>Below limit</td>
</tr>
<tr>
<td>5</td>
<td>"Detection delay"</td>
<td>5 seconds</td>
</tr>
<tr>
<td>6</td>
<td>"Resetting delay"</td>
<td>8 seconds</td>
</tr>
<tr>
<td>A</td>
<td>Limit-exceeded function active</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Action</td>
<td>Warning</td>
</tr>
</tbody>
</table>

Factory setting

Special functions
"Pulse flowmeter setup"

You can connect an external pulse flowmeter to one of the digital inputs in order to register the actual and accumulated flows. Based on this, you can also calculate the specific energy.
To enable a pulse flowmeter, set one of the digital inputs to "Accumulated flow" and set the pumped volume per pulse. See "Digital inputs" on page 46.

"Ramps"

The ramps determine how quickly the motor can accelerate and decelerate during start-stop or setpoint changes.
You can set the following:
• acceleration time, 0.1 to 300 seconds
• deceleration time, 0.1 to 300 seconds.
The times apply to the acceleration from 0 rpm to fixed maximum speed and the deceleration from fixed maximum speed to 0 rpm.
At short deceleration times, the deceleration of the motor may depend on load and inertia as there is no possibility of actively braking the motor.
If the power supply is switched off, the deceleration of the motor only depends on load and inertia.

Fig. 52 Ramp-up and ramp-down

Factory setting
"Standstill heating"

You can use this function to avoid condensation in humid environments. When you set the function to "Active" and the pump is in operating mode "Stop", a low AC voltage will be applied to the motor windings. The voltage is not high enough to make the motor rotate, but ensures that sufficient heat is generated to avoid condensation in the motor including the electronic parts in the drive.

Note: Remember to remove the drain plugs and fit a cover over the motors.

Factory setting

"Motor bearing monitoring"

You can set the motor bearing monitoring function to these values:
- "Active"
- "Not active"

When the function is set to "Active", a counter in the controller will start counting the mileage of the bearings.

The counter continues counting even if the function is changed to "Not active", but a warning is not given when it is time for replacement or relubrication.

When the function is changed to "Active again", the accumulated mileage is again used to calculate the replacement or relubrication time.

Factory setting

"Service"

"Motor bearing monitoring" must be activated in order for the motor to indicate that bearings must be replaced or relubricated. See "Motor bearing monitoring" on page 57.

For motors of 7.5 kW and below, it is not possible to relubricate the bearings. Bearings on motors of 11 kW and above can be relubricated.

"Time until next service" ("Motor bearing service")
This display shows when to replace or relubricate the motor bearings. The controller monitors the operating pattern of the motor and calculates the period between bearing replacements or relubrications.

Displayable values:
- "in 2 years"
- "in 1 year"
- "in 6 months"
- "in 3 months"
- "in 1 month"
- "in 1 week"
- "Now".

"Bearing replacements"
This display shows the number of bearing replacements that have been done during the lifetime of the motor.

"Bearings replaced" ("Motor bearing maintenance")
When the bearing monitoring function is active, the controller gives a warning when the motor bearings are to be replaced.

When you have replaced the motor bearings, confirm this action by pressing [Bearings replaced].

"Bearing relubrications"
The following applies only for 11 kW motors.
This display shows the number of bearing relubrications that have been done since the last bearing replacement.
"Bearings relubricated" (Motor bearing maintenance)
The following applies only for 11 kW motors.
When the bearing monitoring function is active, the controller gives a warning when the motor bearings are due to be relubricated.
When you have relubricated the motor bearings, press [Bearings relubricated].
The factory-set interval between relubrications is stated on the bearing nameplate which is placed on the motor. The relubrication interval can be changed by a Grundfos service technician.
It is possible to relubricate the bearings five times according to the preset interval. When the preset interval has been reached after the fifth relubrication, a warning will be given to replace the bearings.

Communication
"Number" ("Pump number")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

You can allocate a unique number to the pump. This makes it possible to distinguish between pumps in connection with bus communication.

Factory setting

"Radio communication" ("Enable/disable radio comm.")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Radio communication"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

You can set the radio communication to either enabled or disabled. You can use this function in areas where radio communication is not allowed.
IR communication remains active.

Factory setting

General settings
"Language"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Language"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.
In this menu you can select the desired language. A number of languages are available.

"Date and time"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Date and time"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

You can set date and time as well as how they are to be shown in the display:
• "Select date format"
 "YYYY-MM-DD"
 "DD-MM-YYYY"
 "MM-DD-YYYY".
• "Select time format"
 "HH:MM 24-hour clock"
 "HH:MM am/pm 12-hour clock".
• "Set date"
• "Set time".

"Unit configuration" ("Units")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Unit configuration"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

In this menu you can select between SI and US units. The setting can be made generally for all parameters or customized for each parameter.

Factory setting
"Buttons on product" ("Enable/disable settings")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Buttons on product"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

In this display, you can disable the possibility of making settings.

Grundfos GO

If you set the buttons to "Not active", the buttons on the standard control panel are disabled. If you set the buttons to "Not active" on pumps with an advanced control panel, see below.

Advanced control panel

If you have disabled the settings, you can still use the buttons to navigate through the menus but you cannot make changes in the "Settings" menu.

When you have disabled the possibility to make settings, the symbol appears in the display.

To unlock the pump and allow settings, press and simultaneously for at least 5 seconds.

Standard control panel

The button always remains active but you can only unlock all other buttons on the pump with Grundfos GO.

"Delete history"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Delete history"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.

In this menu, you can delete the following historic data:
- "Delete work log."
- "Delete heat energy data"
- "Delete energy consumption".

"Define Home display"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Define Home display"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.

In this menu, you can set the "Home" display to show up to four user-set parameters.

"Display settings"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Display settings"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.

In this menu you can adjust the display brightness and set whether or not the display is to turn off if no buttons have been activated for a period of time.

"Store settings" ("Store actual settings")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Store settings"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Grundfos GO

In this menu, you can store the actual settings for later use in the same pump or in other pumps of the same type.

Advanced control panel

In this menu, you can store the actual settings for later use in the same pump.

"Recall settings" ("Recall stored settings")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Recall settings"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

Grundfos GO

In this menu, you can recall stored settings from a number of previously stored settings that the pump then uses.

Advanced control panel

In this menu, you can recall the last stored settings that the pump then uses.

"Undo"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Undo"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in Grundfos GO.

In this display, you can undo all settings that have been made with Grundfos GO in the current communication session. You cannot undo a "Recall stored settings" action.
"Pump name"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Pump name"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in Grundfos GO. In this display, you can give the pump a name. In this way, you can easily identify the pump when connecting with Grundfos GO.

Factory setting

"Connection code"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Connection code"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in Grundfos GO. You can set a connection code to avoid having to press the connection button each time and to restrict remote access to the product.

Setting the code in the product using Grundfos GO
1. Connect Grundfos GO to the product.
2. In the product dashboard, select "Settings".
3. Choose "Connection code".
4. Enter the wanted code and press [OK].

The code must be a character string, ASCII. You can always modify the code. The old code is not needed.

Setting the code in Grundfos GO
You can set a default connection code in Grundfos GO so that it automatically attempts to connect to the selected product via this code.

When you select a product with the same connection code in Grundfos GO, Grundfos GO automatically connects to the product and you do not have to press the connection button on the module.

Set the default code in Grundfos GO in this way:
1. In the main menu, under "General", select "Settings".
2. Choose "Remote".
3. Enter the connection code in the field "Preset connection code". The field now says "Connection code set".

You can always modify the default connection code by pressing [Delete] and entering a new one.

If Grundfos GO fails to connect and ask you to press the connection button on the product, it means that the product has no connection code or has a different connection code. In this case, you can only establish connection via the connection button.

After setting a connection code, you must switch off the product until the light in Grundfos Eye turns off before you can use the new connection code.

Factory setting

"Run startup guide"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Run startup guide"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.
The startup guide automatically starts when you start the pump for the first time.
You can always run the startup guide later via this menu.

The startup guide guides you through the general settings of the pump.
- "Language". See "Language" on page 58.
- "Select date format".*
 See "Date and time" on page 58.
- "Set date".*
 See "Date and time" on page 58.
- "Select time format".*
 See "Date and time" on page 58.
- "Set time".*
 See "Date and time" on page 58.
- "Setting of pump"
 – "Go to Home"
 – "Run with Constant curve" / "Run with Constant pressure".
 See "Control mode" on page 36
 – "Go to Assisted pump setup".
 See "Assisted pump setup" on page 61.
 – "Return to factory settings".

* Applies only for pumps with advanced functional module, FM 300. For further information, see Identification of functional module on page 84.
"Alarm log"

This menu contains a list of logged alarms from the product. The log shows the name of the alarm, when the alarm occurred and when it was reset.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Alarm log"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

"Warning log"

This menu contains a list of logged warnings from the product. The log shows the name of the warning, when the warning occurred and when it was reset.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Warning log"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

"Assist"

The menu consist of functions which take you through the steps needed to set the pump.

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Assist"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

"Assisted pump setup"

The menu guides you through the following:

Setting of pump

- Selection of control mode. See page 36.
- Configuration of feedback sensors.
- Adjusting the setpoint. See page 35.
- Controller settings. See page 50.
- Summary of settings.

Example of how to use the "Assisted pump setup" for setting up the pump to constant pressure:

1. Open the "Assist" menu.
2. Select "Assisted pump setup".
3. Select the control mode "Constant pressure".
4. Read the description of this control mode.
5. Select which analog input to use as sensor input.
6. Select sensor function according to where the sensor is installed in the system. See fig. 38.
7. Select electrical input signal according to the sensor specifications.
8. Select measuring unit according to the sensor specifications.
9. Set the minimum and maximum sensor values according to the sensor specifications.
10. Set the desired setpoint.
11. Set the controller settings K_p and T_i. See the recommendations in section "Controller" ("Controller settings") on page 50.
12. Type the pump name.
13. Check the summary of settings and confirm them.

Advanced control panel

1. Open the "Assist" menu.
2. Select "Assisted pump setup".
3. Select the control mode "Const. pressure".
4. Select which analog input to use as sensor input.
5. Select the measured parameter to be controlled. See fig. 38.
6. Select measuring unit according to the sensor specifications.
7. Set the minimum and maximum sensor values according to the sensor specifications.
8. Select electrical input signal according to the sensor specifications.
9. Set the setpoint.
10. Set the controller settings K_p and T_i. See recommendations in section "Controller" ("Controller settings") on page 50.
11. Check the summary of settings and confirm them by pressing [OK].
"Setup, analog input"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Setup, analog input"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel. The menu guides you through the following:

"Setup, analog input"
- Analog inputs 1 to 3. See page 44.
- Pt100/1000 input 1 and 2. See page 46.
- Adjusting the setpoint. See page 35.
- Summary.

"Setting of date and time"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Setting of date and time"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu guides you through the following:
- "Select date format". See "Date and time" on page 58.
- "Set date". See "Date and time" on page 58.
- "Select time format". See "Date and time" on page 58.
- "Set time". See "Date and time" on page 58.

"Multipump setup" ("Setup of multi-pump system")

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Multipump setup"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

The multipump function enables the control of two pumps connected in parallel without the use of external controllers. The pumps in a multipump system communicate with each other via the wireless GENIair connection or the wired GENI connection. A multipump system is set via a selected pump: the master pump, which is the first selected pump.

If two pumps in the system are configured with an outlet-pressure sensor, both pumps can function as master pumps and take over the master pump function if the other fails. This provides additional redundancy in the multipump system.

The multipump functions are described in the following sections.

Alternating operation
Alternating operation functions as a duty-standby operating mode and is possible with two pumps of same size and type connected in parallel. The main purpose of the function is to ensure an even amount of running hours and that the standby pump takes over if the running pump stops due to an alarm.

Each pump requires a non-return valve in series with the pump. You can choose between two alternating operation modes:
- Alternating operation, time
 Pump changeover to the other is based on time.
- Alternating operation, energy
 Pump changeover to the other is based on energy consumption.

If the duty pump fails, the other pump takes over automatically.

Backup operation
Backup operation is possible with two pumps of same size and type connected in parallel. Each pump requires a non-return valve in series with the pump. One pump is operating continuously. The backup pump is operated for a short time each day to prevent seizing up. If the duty pump stops due to a fault, the backup pump starts automatically.
Cascade operation
Cascade operation ensures that the pump performance is automatically adapted to the consumption by switching pumps on or off. The system thus runs as energy-efficiently as possible with a constant pressure and a limited number of pumps.

When a twin-head pump is running in constant-pressure control mode, the second pump head starts at 90 % and stops at 50 % performance.

All pumps in operation run at equal speed. Pump changeover is automatic and depends on energy, operating hours and fault.

Pump system:
- Twin-head pump.
- Two or four single-head pumps connected in parallel.
 The pumps must be of the same type and size. Each pump requires a non-return valve in series with the pump.

Set the control mode to "Const. pressure" or "Const. curve".
This function is available with up to 4 motors installed in parallel. The motors must be of the same size and the pumps must be of the same model.
- The performance is adjusted to the demand through cutting pumps in or out and through parallel control of the pumps in operation.
- The controller maintains a constant pressure through continuous adjustment of the speed of the pumps.
- Pump changeover is automatic and depends on load, operating hours and fault detection.
- All pumps in operation run at the same speed.
- The number of pumps in operation also depends on the energy consumption of the pumps. If only one pump is required, two pumps will run at a lower speed if this results in a lower energy consumption.
- If several motors in the system have a sensor, they can all function as master and take over the master function if the other fails.

Setting a multipump system
You can set a multipump system in the following ways:
- Grundfos GO and wireless pump connection
- Grundfos GO and wired pump connection
- Advanced control panel and wireless pump connection
- Advanced control panel and wired pump connection.

See step-by-step descriptions below.

Grundfos GO and wireless pump connection
1. Power on both pumps.
2. Establish contact to one of the pumps with Grundfos GO.
3. Set the needed analog and digital inputs via Grundfos GO according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
4. Assign a pump name to the pump using Grundfos GO. See "Pump name" on page 60.
5. Disconnect Grundfos GO from the pump.
6. Establish contact to the other pump.
7. Set the needed analog and digital inputs via Grundfos GO according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
8. Assign a pump name to the pump using Grundfos GO. See "Pump name" on page 60.
9. Select the "Assist" menu and "Multipump setup".
10. Select the desired multipump function. See Alternating operation on page 62, Backup operation on page 62 and Cascade operation on page 63.
11. Press [>] to continue.
12. Set the time for pump changeover such as the time at which the alternation between the two pumps is to take place. This step applies only if you have selected "Alternating operation, time" and if the pumps are fitted with FM 300.
13. Press [>] to continue.
14. Select "Radio" as the communication method to be used between the two pumps.
15. Press [>] to continue.
16. Press "Select pump 2".
17. Select the pump from the list.
 Use the [OK] or button to identify the pump.
18. Press [>] to continue.
19. Confirm the multipump setup by pressing [Send].
21. Wait for the green indicator light in the middle of Grundfos Eye to light up.

The multipump system has now been set.
Grundfos GO and wired pump connection
1. Connect the two pumps with each other with a 3-core screened cable between the GENIbus terminals A, Y, B.
2. Power on both pumps.
3. Establish contact to one of the pumps with Grundfos GO.
4. Set the needed analog and digital inputs via Grundfos GO according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
5. Assign a pump name to the pump using Grundfos GO. See "Pump name" on page 60.
6. Assign pump number 1 to the pump. See "Number" ("Pump number") on page 58.
7. Disconnect Grundfos GO from the pump.
8. Establish contact to the other pump.
9. Set the needed analog and digital inputs via Grundfos GO according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
10. Assign a pump name to the pump using Grundfos GO. See "Pump name" on page 60.
11. Assign pump number 2 to the pump. See "Number" ("Pump number") on page 58.
12. Select the "Assist" menu and choose "Multipump setup".
14. Press [>] to continue.
15. Set the time for pump changeover such as the time at which the alternation between the two pumps is to take place. This step applies only if you have selected "Alternating operation, time" and if the pumps are fitted with FM 300.
16. Press [>] to continue.
17. Select "BUS cable" as the communication method to be used between the two pumps.
18. Press [>] to continue.
19. Press "Select pump 2".
20. Select the additional pump from the list.
 Use the [OK] or button to identify the additional pump.
21. Press [>] to continue.
22. Press [Send].
24. Wait for the green indicator light in the middle of Grundfos Eye to light up.
The multipump system has now been set.

Advanced control panel and wireless pump connection
1. Power on both pumps.
2. On both pumps, set the needed analog and digital inputs according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
3. Select the "Assist" menu on one of the pumps and choose "Setup of multi-pump system".
4. Press [>] to continue.
5. Select "Wireless" as the communication method to be used between the two pumps.
6. Press [>] to continue.
7. Select the desired multipump function. See Alternating operation on page 62, Backup operation on page 62 and Cascade operation on page 63.
8. Press [>] three times to continue.
 The green indicator light in the middle of Grundfos Eye flashes on the other pumps.
10. Press the connect button on the pump which is to be added to the multipump system.
11. Press [>] to continue.
12. Set the time for pump changeover i.e. the time at which the alternation between the two pumps is to take place. This step applies only if you have selected "Alternating operation, time" and if the pumps are fitted with FM 300.
13. Press [>] to continue.
14. Press [OK].
 The multipump function icons appear in the bottom of the control panels.
The multipump system has now been set.
User interfaces for TPE pumps

Advanced control panel and wired pump connection
1. Connect the two pumps with each other with a 3-core screened cable between the GENIbus terminals A, Y, B.
2. Set the needed analog and digital inputs according to the connected equipment and the required functionality. See "Assisted pump setup" on page 61.
3. Assign pump number 1 to the first pump. See "Number" ("Pump number") on page 58.
4. Assign pump number 2 to the other pump. See "Number" ("Pump number") on page 58.
5. Select the "Assist" menu on one of the pumps and choose "Setup of multi-pump system".
6. Press [>] to continue.
7. Select "Wired GENIbus" as the communication method to be used between the two pumps.
8. Press [>] twice to continue.
10. Press [>] to continue.
11. Press [OK] to search for other pumps.
12. Select the additional pump from the list.
13. Press [>] to continue.
14. Set the time for pump changeover i.e. the time at which the alternation between the two pumps is to take place.
 This step applies only if you have selected "Alternating operation, time" and if the pumps are fitted with FM 300.
15. Press [>] to continue.
16. Press [OK].
 The multipump function icon appears in the bottom of the control panels.
 The multipump system has now been set.

Disabling the multipump function via Grundfos GO
1. Select the "Assist" menu.
2. Select "Multipump setup".
3. Select "Disable".
4. Press [>] to continue.
5. Confirm the multipump setup by pressing [Send].
6. Press [Finish].
 The multipump function has now been disabled.

Disabling a multipump via advanced control panel
1. Select the "Assist" menu.
2. Select "Setup of multi-pump system".
3. Press [>] to continue.
4. Confirm "No multi-pump function" by pressing [OK].
5. Press [>] to continue.
6. Press [OK].
 The multipump system has now been disabled.

"Description of control mode"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Description of control mode"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu is only available in the advanced control panel.
This menu describes each of the possible control modes. See also section "Control mode" on page 36.

"Assisted fault advice"

<table>
<thead>
<tr>
<th>Pump variant</th>
<th>"Assisted fault advice"</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE3, TPE3 D</td>
<td>●</td>
</tr>
<tr>
<td>TPE2, TPE2 D</td>
<td>●</td>
</tr>
</tbody>
</table>

This menu gives guidance and corrective actions in case of pump failures.
Priority of settings

You can always set the pump to stop by pressing on the pump control panel. When the pump is not in "Stop" mode, you can always stop the pump by continuously pressing . Furthermore, you can set the pump to maximum speed by continuously pressing . You can always set the pump to operation at maximum speed or to stop with Grundfos GO.

If two or more functions are enabled at the same time, the pump will operate according to the function with the highest priority.

Example

If you have set the pump to maximum speed via the digital input, the pump control panel or Grundfos GO can only set the pump to "Manual" or "Stop". The priority of the settings appears from the table below.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Start-stop button</th>
<th>Grundfos GO or control panel on the motor</th>
<th>Digital input</th>
<th>Bus communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Stop"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>"Stop"*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>"Manual"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>"Max. speed"*/</td>
<td>"User-defined speed"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>"Stop"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>"User-defined speed"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>"Stop"</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>"Max. speed"</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>"Min. speed"</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>"Start"</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>"Max. speed"</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>"Min. speed"</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>"Min. speed"</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>"Start"</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>"Start"</td>
<td></td>
</tr>
</tbody>
</table>

* "Stop" and "Max. speed" settings made with Grundfos GO or on the motor control panel can be overruled by another operating-mode command sent from a bus, for example "Start". If the bus communication is interrupted, the motor resumes its previous operating mode, for example "Stop", selected with Grundfos GO or on the motor control panel.
Grundfos Eye

The operating condition of the motor is indicated by Grundfos Eye on the control panel. See fig. 53 (A).

<table>
<thead>
<tr>
<th>Grundfos Eye</th>
<th>Indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No lights are on.</td>
<td>The power is off. The pump is not running.</td>
<td></td>
</tr>
<tr>
<td>The two opposite green indicator lights are rotating in the direction of rotation of the pump when seen from the non-drive end.</td>
<td>The power is on. The pump is running.</td>
<td></td>
</tr>
<tr>
<td>The two opposite green indicator lights are permanently on.</td>
<td>The power is on. The pump is not running.</td>
<td></td>
</tr>
<tr>
<td>One yellow indicator light is rotating in the direction of rotation of the pump when seen from the non-drive end.</td>
<td>Warning. The pump is running.</td>
<td></td>
</tr>
<tr>
<td>One yellow indicator light is permanently on.</td>
<td>Warning. The pump has stopped.</td>
<td></td>
</tr>
<tr>
<td>The two opposite red indicator lights flash simultaneously.</td>
<td>Alarm. The pump has stopped.</td>
<td></td>
</tr>
<tr>
<td>The green indicator light in the middle flashes quickly four times.</td>
<td>This is a feedback signal which the pump gives in order to ensure identification of itself.</td>
<td></td>
</tr>
<tr>
<td>The green indicator light in the middle flashes continuously.</td>
<td>Grundfos GO or another pump is trying to communicate with the pump. Press (\text{[on]}) on the pump control panel to allow communication.</td>
<td></td>
</tr>
<tr>
<td>The green indicator light in the middle is permanently on.</td>
<td>Remote control with Grundfos GO via radio. The pump is communicating with Grundfos GO via radio connection.</td>
<td></td>
</tr>
<tr>
<td>The green indicator light in the middle flashes quickly while Grundfos GO is exchanging data with the pump. It takes a few seconds.</td>
<td>Remote control with Grundfos GO via infrared light. The pump is receiving data from Grundfos GO via infrared communication.</td>
<td></td>
</tr>
</tbody>
</table>
Indicator lights and signal relays

The pump has two outputs for potential-free signals via two internal relays. You can set the signal outputs to "Operation", "Pump running", "Ready", "Alarm" and "Warning". The functions of the two signal relays appear from the table below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Grundfos Eye</th>
<th>Contact position for signal relays when activated</th>
<th>Operating mode*</th>
</tr>
</thead>
<tbody>
<tr>
<td>The power is off.</td>
<td>Off</td>
<td>"Operation"</td>
<td>"Pump running"</td>
</tr>
<tr>
<td>The pump runs in "Normal" mode.</td>
<td>Green, rotating</td>
<td>"Normal", "Min." or "Max."</td>
<td></td>
</tr>
<tr>
<td>The pump runs in "Manual" mode.</td>
<td>Green, rotating</td>
<td>"Manual"</td>
<td></td>
</tr>
<tr>
<td>The pump is in operating mode "Stop".</td>
<td>Green, steady</td>
<td>"Stop"</td>
<td></td>
</tr>
<tr>
<td>Warning, but the pump runs.</td>
<td>Yellow, rotating</td>
<td>"Normal", "Min." or "Max."</td>
<td></td>
</tr>
<tr>
<td>Warning, but the pump runs in "Manual" mode.</td>
<td>Yellow, rotating</td>
<td>"Manual"</td>
<td></td>
</tr>
<tr>
<td>Warning, but the pump was stopped via "Stop" command.</td>
<td>Yellow, steady</td>
<td>"Stop"</td>
<td></td>
</tr>
<tr>
<td>Alarm, but the pump runs.</td>
<td>Red, rotating</td>
<td>"Normal." "Min." or "Max."</td>
<td></td>
</tr>
<tr>
<td>Alarm, but the pump runs in "Manual" mode.</td>
<td>Red, rotating</td>
<td>"Manual"</td>
<td></td>
</tr>
<tr>
<td>The pump has stopped due to an alarm.</td>
<td>Red, flashing</td>
<td>"Stop"</td>
<td></td>
</tr>
</tbody>
</table>
The functions of the two indicator lights and the signal relay are as shown in the following table:

<table>
<thead>
<tr>
<th>Fault</th>
<th>Operation</th>
<th>Signal relay activated during:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>green</td>
<td>"Fault/"Alarm" and "Relubricate"</td>
<td>The power supply has been switched off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Operating"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Ready"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Pump running"</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Permanently on</td>
<td></td>
<td>The pump runs.</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing</td>
<td></td>
<td>The pump has been set to stop.</td>
</tr>
<tr>
<td>Permanently on</td>
<td>Off</td>
<td></td>
<td>The pump runs, but it has or has had a "Fault" or "Alarm" allowing the pump to continue operation. Or the pump runs with a "Warning" or "Relubricate" indication. If the pump was stopped, restarting will be attempted. It may be necessary to restart the pump by resetting the "Fault" indication.</td>
</tr>
<tr>
<td>Permanently on</td>
<td>Permanently on</td>
<td></td>
<td>If the cause is "Sensor signal outside signal range", the pump continues to run according to the maximum curve, and you cannot reset the fault indication until the signal is inside the signal range. If the cause is "Setpoint signal outside signal range", the pump continues to run according to the minimum curve, and you cannot reset the fault indication until the signal is inside the signal range.</td>
</tr>
<tr>
<td>Permanently on</td>
<td>Flashing</td>
<td></td>
<td>The pump has been set to stop, but it has been stopped because of a "Fault".</td>
</tr>
</tbody>
</table>

Resetting of fault indication

You can reset a fault indication in one of the following ways:

- Briefly press 📦 or 📦 on the pump. This will not change the setting of the pump. A fault indication cannot be reset by means of 📦 or 📦 if the buttons have been locked.
- Switch off the power supply until the indicator lights are off.
- Switch the external start-stop input off and then on again.
- Use Grundfos GO.
9. Factory settings of E-pumps

- Function is enabled.
- Function is disabled.
- Function is not available.

<table>
<thead>
<tr>
<th>Settings</th>
<th>TPE3, TPE3 D</th>
<th>TPE2, TPE2 D</th>
<th>Comments</th>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Setpoint"</td>
<td>Auto</td>
<td>67 %</td>
<td></td>
<td>Page 35</td>
</tr>
<tr>
<td>"Operating mode"</td>
<td>Normal</td>
<td>Normal</td>
<td></td>
<td>Page 36</td>
</tr>
<tr>
<td>"Control mode"</td>
<td>AutoAdapt</td>
<td>Constant curve</td>
<td></td>
<td>Page 36</td>
</tr>
<tr>
<td>"Date and time"</td>
<td>●</td>
<td>●</td>
<td></td>
<td>Page 58</td>
</tr>
<tr>
<td>"FLOW LIMIT"</td>
<td>☓</td>
<td>-</td>
<td></td>
<td>Page 43</td>
</tr>
<tr>
<td>"Automatic night setback"</td>
<td>☓</td>
<td>-</td>
<td></td>
<td>Page 44</td>
</tr>
<tr>
<td>"Temperature influence"</td>
<td>☓</td>
<td>-</td>
<td></td>
<td>Page 54</td>
</tr>
<tr>
<td>"Buttons on product"</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Controller"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Kp"</td>
<td>1.0</td>
<td>0.5</td>
<td></td>
<td>Page 50</td>
</tr>
<tr>
<td>"Ti"</td>
<td>8.0</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Operating range"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Min."</td>
<td>25 %</td>
<td>25 %</td>
<td></td>
<td>Page 51</td>
</tr>
<tr>
<td>"Max."</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Ramps"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 56</td>
</tr>
<tr>
<td>"Pump number"</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Page 58</td>
</tr>
<tr>
<td>"Radio communication"</td>
<td>●</td>
<td>●</td>
<td></td>
<td>Page 58</td>
</tr>
<tr>
<td>"Sensor type"</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Page 44</td>
</tr>
<tr>
<td>"Analog input 1"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 44</td>
</tr>
<tr>
<td>"Analog input 2"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Analog input 3"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Built-in Grundfos sensor"</td>
<td>●</td>
<td>-</td>
<td></td>
<td>Page 45</td>
</tr>
<tr>
<td>"Pt100/1000 input 1"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 46</td>
</tr>
<tr>
<td>"Pt100/1000 input 2"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 46</td>
</tr>
<tr>
<td>"Digital input 1"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 46</td>
</tr>
<tr>
<td>"Digital input 2"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 46</td>
</tr>
<tr>
<td>"Digital in/output 3"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 47</td>
</tr>
<tr>
<td>"Digital in/output 4"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Pulse flowmeter"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 56</td>
</tr>
<tr>
<td>"Predefined setpoint"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 54</td>
</tr>
<tr>
<td>"Analog output (1, 2, 3, 4, 5)"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 49</td>
</tr>
<tr>
<td>"External setpoint funct."</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 52</td>
</tr>
<tr>
<td>"Signal relay 1"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 47</td>
</tr>
<tr>
<td>"Signal relay 2"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Limit 1 exceeded"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 55</td>
</tr>
<tr>
<td>"Limit 2 exceeded"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Standstill heating"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 57</td>
</tr>
<tr>
<td>"Motor bearing monitoring"</td>
<td>☓</td>
<td>☓</td>
<td></td>
<td>Page 57</td>
</tr>
<tr>
<td>"Pump name"</td>
<td>Grundfos</td>
<td>Grundfos</td>
<td></td>
<td>Page 60</td>
</tr>
<tr>
<td>"Connect code"</td>
<td>-</td>
<td>-</td>
<td></td>
<td>Page 60</td>
</tr>
<tr>
<td>"Unit configuration"</td>
<td>SI units</td>
<td>SI units</td>
<td></td>
<td>Page 58</td>
</tr>
</tbody>
</table>

Multipump factory setting for twin-pumps: Alternating operation on time.
10. Communication

Communication with TPE2, TPE2 D, TPE3, TPE3 D, TPE, TPED pumps is possible via a central building management system, remote control, Grundfos GO, or control panel.

Central building management system

The operator can communicate with a TPE2, TPE2 D, TPE3, TPE3 D, TPE pump at a distance. Communication can take place via a central building management system allowing the operator to monitor and change control modes and setpoint settings. See “CIM communication interface modules” on page 111.

Remote control

The operator can monitor and change control modes and settings of the pump with Grundfos GO. See Grundfos GO on page 31.
11. Speed regulation

Affinity equations

Normally, the pumps are used in applications characterised by a variable flow rate. Consequently, you cannot select a pump that is constantly operating at its optimum efficiency.

In order to achieve optimum operating economy, the duty point must be close to the optimum efficiency, \(\eta \), for most operating hours.

Between the minimum and maximum performance curves, the pumps have an infinite number of performance curves each representing a specific speed. Therefore, you may not be able to select a duty point close to the maximum curve.

In situations where you can select a duty point close to the maximum curve, use the affinity equations below. The head, \(H \), the flow rate, \(Q \) and the input power, \(P \), are the appropriate variables you need for calculating the motor speed, \(n \).

Note: The approximated formulas apply on condition that the system characteristic remains unchanged for the rated motor speed and the current motor speed, and that it is based on the following formula: \(H \) is equal to \(k \times Q^2 \) where \(k \) is a constant.

The power equation implies that the pump efficiency is unchanged at the two speeds. In practice, this is not quite correct.

Finally, it is worth noting that the efficiencies of the frequency converter and the motor must also be taken into account if you want a precise calculation of the power saving resulting from a reduction of the pump speed.

![Fig. 55 Minimum and maximum performance curves](image)

![Fig. 56 Affinity equations](image)

Legend

- \(H_n \) Rated head in metres
- \(H_x \) Current head in metres
- \(Q_n \) Rated flow rate in m³/h
- \(Q_x \) Current flow rate in m³/h
- \(n_n \) Rated motor speed in min⁻¹
- \(n_x \) Current motor speed in min⁻¹
- \(\eta_n \) Rated efficiency in %
- \(\eta_x \) Current efficiency in %
- \(P_n \) Rated power in kW
- \(P_x \) Current power in kW

Grundfos Product Center

Grundfos Product Center can help you select the right pump according to your requirements. See page 280.
12. Control of pumps in parallel

In some applications, parallel pump operation is required for one or more of the following reasons:
- One pump cannot achieve the required performance, flow rate.
- Standby performance is required to ensure reliability of supply.
- Overall efficiency needs to be improved in case of big variations in the flow demand.

The table below lists the different possibilities of controlling pumps connected in parallel.

<table>
<thead>
<tr>
<th>Parallel-operation control possibilities</th>
<th>Pumps connected to Control MPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in alternation/standby function</td>
<td>You can connect TPE2 pumps directly to Grundfos Control MPC.</td>
</tr>
<tr>
<td>Built-in parallel operation function</td>
<td>Control MPC incorporates a CU 352 control unit that can control up to six pumps.</td>
</tr>
<tr>
<td>Control MPC</td>
<td>By means of an external sensor, Control MPC can ensure optimum adaptation of the performance to the demand by closed-loop control of these parameters:</td>
</tr>
<tr>
<td>Control MPC Series 2000</td>
<td>• proportional differential pressure</td>
</tr>
<tr>
<td></td>
<td>• constant differential pressure</td>
</tr>
<tr>
<td></td>
<td>• differential pressure (remote)</td>
</tr>
<tr>
<td></td>
<td>• flow rate</td>
</tr>
<tr>
<td></td>
<td>• temperature.</td>
</tr>
</tbody>
</table>

CU 352 incorporates features such as those below:

Startup wizard
Correct installation and commissioning is a prerequisite for attaining optimum performance of the system and trouble-free operation year in and year out.
During commissioning of the system, a startup wizard is shown on the display of CU 352. The wizard guides the operator through the various steps via a series of dialogue boxes to ensure that all settings are done in the correct sequence.

Application-optimized software
CU 352 incorporates application-optimized software which helps you set your system to the application in question.
Furthermore, navigating through the menus of the control unit is done in a user-friendly way. You do not need any training to be able to set and monitor the system.

Ethernet connection
CU 352 incorporates an ethernet connection which makes it possible to get full and unlimited access to the setting and monitoring of the system via a remote PC.

Service port, GENI TTL
The service port of CU 352 enables easy access to updating software and data logging in service situations.

External communication
Control MPC enables communication with other fieldbus protocols. In order to communicate with other fieldbus protocols, a GENIbus module and a gateway are required.
Control MPC can communicate with LonWorks, PROFIBUS, Modbus, BACnet, GSM/GPRS or GRM via Grundfos CIU.
Pumps connected to Control MPC Series 2000

TPE Series 2000, TPE3 pumps are connected directly to Grundfos Control MPC Series 2000 via GENIbus. Control MPC Series 2000 incorporates a CU 352 control unit that can control up to six pumps. All pumps must be of the same type and size. Control MPC Series 2000 is used for controlling circulator pumps in heating and air-conditioning applications.

Control MPC Series 2000 ensures optimal adaptation of the performance to the demand by closed-loop control of these parameters:

• proportional differential pressure
• constant differential pressure.

By means of an external sensor Control MPC Series 2000 can also ensure optimum adaptation of the performance to the demand by closed-loop control of these parameters:

• differential pressure (remote)
• flow rate
• temperature.

Note: For further information about Control MPC and Control MPC Series 2000, see the data booklet "Control MPC". The data booklet is available online in Grundfos Product Center. See page 280.
13. Motor data

Motors

The motors are totally enclosed, fan-cooled (TEFC) motors with main dimensions to IEC and NEMA standards. Electrical tolerances to IEC 34.

Mounting designation

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Mounting designation - NEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE (D) 2/3</td>
<td>56C</td>
</tr>
</tbody>
</table>

Relative humidity: Maximum 95 %
Enclosure class: IP55
Insulation class: F (IEC 85)
Ambient temperature: Maximum 140 °F (60 °C), ML motors
 Maximum 122 °F (50 °C), 2 and 4-pole MLE
 Maximum 104 °F (40 °C), other motors

If the pump is installed in humid locations, open the lowest drain hole in the motor. This reduces the motor enclosure class to IP44.

High-efficiency motors

TPE2, TPE2 D, TPE3, TPE3 D pumps are fitted with Grundfos permanent-magnet MLE motors that have motor efficiency class IE5 according to IEC 60034-30-2.

Electrical data, speed-controlled motors

1 x 240 V, TPE2, TPE2 D, TPE3, TPE3 D pumps

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Motor [hp (kW)]</th>
<th>(I_{1/1}) [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-80</td>
<td>0.3 (0.25)</td>
<td>1.58</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-120</td>
<td>0.5 (0.37)</td>
<td>2.17</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-150</td>
<td>0.75 (0.55)</td>
<td>3.04</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-180</td>
<td>1 (0.75)</td>
<td>4.17</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-200</td>
<td>1.5 (1.1)</td>
<td>5.97</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-240</td>
<td>2 (1.5)</td>
<td>8.00</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-60</td>
<td>0.5 (0.37)</td>
<td>2.17</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-80</td>
<td>0.5 (0.37)</td>
<td>2.17</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-120</td>
<td>0.75 (0.55)</td>
<td>3.04</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-150</td>
<td>1 (0.75)</td>
<td>4.1</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-180</td>
<td>1.5 (1.1)</td>
<td>5.97</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-200</td>
<td>2 (1.5)</td>
<td>8.00</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-80</td>
<td>0.5 (0.37)</td>
<td>2.17</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-120</td>
<td>1.5 (1.1)</td>
<td>5.97</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-150</td>
<td>2 (1.5)</td>
<td>8.00</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-180</td>
<td>3 (2.2)</td>
<td>4.03</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-40</td>
<td>0.3 (0.25)</td>
<td>0.88</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-120</td>
<td>1.5 (1.1)</td>
<td>2.15</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-150</td>
<td>2 (1.5)</td>
<td>2.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-180</td>
<td>3 (2.2)</td>
<td>4.03</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-40</td>
<td>0.3 (0.25)</td>
<td>0.88</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-120</td>
<td>1.5 (1.1)</td>
<td>2.15</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-150</td>
<td>2 (1.5)</td>
<td>2.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-180</td>
<td>3 (2.2)</td>
<td>4.03</td>
</tr>
</tbody>
</table>

3 x 460 V, TPE2, TPE2 D, TPE3, TPE3 D pumps

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Motor [hp (kW)]</th>
<th>(I_{1/1}) [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-80</td>
<td>0.3 (0.25)</td>
<td>0.88</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-120</td>
<td>0.5 (0.37)</td>
<td>1.09</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-150</td>
<td>0.75 (0.55)</td>
<td>1.34</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-180</td>
<td>1 (0.75)</td>
<td>1.68</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-200</td>
<td>1.5 (1.1)</td>
<td>2.26</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-240</td>
<td>2 (1.5)</td>
<td>2.96</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-80</td>
<td>0.5 (0.37)</td>
<td>1.04</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-120</td>
<td>0.5 (0.37)</td>
<td>1.04</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-150</td>
<td>0.75 (0.55)</td>
<td>1.34</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-180</td>
<td>1 (0.75)</td>
<td>1.68</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-200</td>
<td>1.5 (1.1)</td>
<td>2.26</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-240</td>
<td>2 (1.5)</td>
<td>2.96</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-80</td>
<td>0.5 (0.37)</td>
<td>1.04</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-120</td>
<td>0.75 (0.55)</td>
<td>1.34</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-150</td>
<td>1 (0.75)</td>
<td>1.68</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-180</td>
<td>1.5 (1.1)</td>
<td>2.26</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-200</td>
<td>2 (1.5)</td>
<td>2.96</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-240</td>
<td>3 (2.2)</td>
<td>4.22</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-80</td>
<td>0.3 (0.25)</td>
<td>0.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-120</td>
<td>1.5 (1.1)</td>
<td>2.15</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-150</td>
<td>2 (1.5)</td>
<td>2.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-180</td>
<td>3 (2.2)</td>
<td>4.03</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-40</td>
<td>0.3 (0.25)</td>
<td>0.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-120</td>
<td>1.5 (1.1)</td>
<td>2.15</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-150</td>
<td>2 (1.5)</td>
<td>2.82</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 100-180</td>
<td>3 (2.2)</td>
<td>4.03</td>
</tr>
</tbody>
</table>
14. Installation

Mechanical installation

You can install TP pumps with motors smaller than 15 hp (11 kW) in horizontal or vertical pipes.

![Fig. 57 Installation of motor sizes smaller than 15 hp (11 kW)](image)

You can suspend pumps with motors smaller than 15 hp (11 kW) directly in the pipes, provided the pipes can support the pump. If not, install the pump on a mounting bracket or base plate.

In installations where the pump is suspended directly in the pipes, the pump can support the pipe length L on both sides of the pump. L is less than 3 x DN. See fig. 58. In installations where the pump is suspended directly in the pipes, the pump must be lifted and held in correct position by means of ropes or similar until both pump flanges are completely fastened to the pipe flanges.

![Fig. 58 Pump suspended directly in the pipes](image)

When installing a twin-head pump in a horizontal pipe and with horizontal shaft, fit the upper pump housing with an automatic vent.

![Fig. 59 Twin-head pumps with automatic vent](image)

Twin-head pump housings have two Rp 1/4 tappings for mounting automatic vents.

![Fig. 60 Tappings for mounting automatic vents in TP Series 200, TPE2 D, TPE3 D](image)

If the liquid temperature falls below the ambient temperature or if the pump is installed outside, condensation may form in the motor during inactivity. In this case, the drain hole in the motor flange must be open and point downwards. See fig. 61.

![Fig. 61 Drain hole](image)

If twin-head pumps are used for pumping liquids with a temperature below 32 °F (0 °C), condensed water may freeze and cause the coupling to get stuck. You can remedy the problem by installing heating elements. Whenever possible, install pumps with motors smaller than 15 hp (11 kW) with horizontal motor shaft. See fig. 59.

Cooling

To ensure sufficient cooling of motor and electronics, observe the following:

- Place the pump in such a way that sufficient cooling is ensured.
- Keep the motor cooling fins, holes in fan cover and fan blades clean.
- Make sure that the frequency for the motor is at least 6 Hz, 12 % of maximum speed. The shaft seal may generate noise at speeds below 25 % of maximum speed.
Condensation cover
When installing the pumps outdoors, provide the motor with a suitable cover to protect the pump and motor against the direct effects of the elements. When mounting the condensation cover on top of the motor, make sure to leave enough space for the air to cool the motor.

![Motors with condensation cover](image1)

Elimination of noise and vibrations
In order to achieve optimum operation and minimum noise and vibration, consider vibration dampening of the pump. Generally, always consider this for pumps with motors of 15 hp (11 kW) and higher. Noise and vibration are generated by the revolutions of the motor and the pump, and by the flow in pipes and fittings. The effect on the environment is subjective and depends on correct installation and the state of the remaining system. Elimination of noise and vibrations is best achieved by means of a concrete foundation, vibration dampers and expansion joints.

![Foundation of TP pump](image2)

Concrete foundation
Install the pump on a plane and rigid concrete foundation. This is the optimum solution for vibration dampening. As a rule of thumb, the weight of a concrete foundation must be 1.5 times the pump weight.

Vibration dampers
To prevent the transmission of vibrations to buildings, we recommend that you isolate the pump foundation from building parts by means of vibration dampers. The selection of the right vibration damper requires the following data:
- Forces transmitted through the damper.
- Motor speed considering speed control, if any.
- Required dampening in %. The suggested value is 70 %.
The right damper varies from installation to installation, and a wrong damper may increase the vibration level. Vibration dampers must therefore be sized by the supplier.
If you install the pump on a foundation with vibration dampers, always fit expansion joints on the pump flanges. This is important to prevent the pump from "hanging" in the flanges.

Expansion joints
Expansion joints do the following:
- absorb expansions or contractions in the pipes caused by changing liquid temperature.
- reduce mechanical strains in connection with pressure surges in the pipes.
- isolate mechanical structure-borne noise in the pipes. Only rubber bellows expansion joints.

Note: Do not install expansion joints to compensate for inaccuracies in the pipes such as centre displacement of flanges.

Fit expansion joints at a distance of minimum 1 to 1.5 times the nominal flange diameter away from the pump on the inlet as well as on the outlet side. This prevents the development of turbulence in the expansion joints, resulting in better suction conditions and a minimum pressure loss on the outlet side. At high water velocities, greater than 5 m/s, we recommend that you install larger expansion joints corresponding to the pipes. See fig. 64.

![TP pump installed with larger expansion joints](image3)
The illustration below shows examples of rubber bellows expansion joints with or without limit rods.

Fig. 65 Examples of rubber bellows expansion joints

You can use expansion joints with limit rods to reduce the effects of the expansion or contraction forces on the pipes. We always recommend expansion joints with limit rods for flanges larger than DN 100. Anchor the pipes in such a way that they do not stress the expansion joints and the pump. Follow the supplier’s instructions and pass them on to advisers or pipe installers.

The illustration below shows an example of a metal bellows expansion joint with limit rods.

Fig. 66 Example of metal expansion joint

Due to the risk of rupture of the rubber bellows, metal bellows expansion joints may be preferred at temperatures above 100 °C combined with high pressure.

Terminal box positions

TP single-head pumps

As standard, the terminal boxes of TP and TPE, TPE2, TPE3 pumps are mounted in 9 o’clock position. The possible terminal box positions are shown below.

Fig. 67 Possible terminal box positions

On TPE2 D, TPE3 D pumps, the terminal box is installed in a position different from 12 o’clock.

Fig. 68 Terminal box positions of TPED pumps

Electrical installation

Standard motors

The operating voltage and frequency are marked on the pump nameplate. Make sure that the motor is suitable for the power supply on which it will be used. Single-phase standard motors incorporate a thermal switch and require no additional motor protection. Three-phase motors must be connected to a motor starter.
15. Motors with built-in VFD

Single-phase supply voltage
1 x 240 V - 10 %/+ 10 %, 50/60 Hz, PE.

Recommended fuse size

<table>
<thead>
<tr>
<th>Motor size [hp (kW)]</th>
<th>Min. [A]</th>
<th>Max. [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 - 1 (0.25 - 0.75)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>1.5 - 2 (1.1 - 1.5)</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

You can use standard as well as quick-blow or slow-blow fuses.

Leakage current
Earth leakage current less than 3.5 mA, AC.
Earth leakage current less than 10 mA, DC.
The leakage currents are measured in accordance with EN 61800-5-1:2007.

Three-phase supply voltage
3 x 460 V - 10 %/+ 10 %, 50/60 Hz, PE.

Recommended fuse size

<table>
<thead>
<tr>
<th>Motor size [hp (kW)]</th>
<th>Min. [A]</th>
<th>Max. [A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 - 1.5 (0.25 - 1.1)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2 (1.5)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3 (2.2)</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

You can use standard as well as quick-blow or slow-blow fuses.

Leakage current, AC

<table>
<thead>
<tr>
<th>Speed [min⁻¹]</th>
<th>Power [hp (kW)]</th>
<th>Mains voltage [V]</th>
<th>Leakage current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400-2000</td>
<td>0.33 - 2 (0.25 - 1.5)</td>
<td>≤ 400</td>
<td>< 3.5</td>
</tr>
<tr>
<td>1450-2200</td>
<td>3 (2.2)</td>
<td>> 400</td>
<td>< 5</td>
</tr>
<tr>
<td>2900-4000</td>
<td>0.33 - 3 (0.25 - 2.2)</td>
<td>≤ 400</td>
<td>< 3.5</td>
</tr>
<tr>
<td>4000-5900</td>
<td>0.3 - 3 (0.25 - 2.2)</td>
<td>> 400</td>
<td>< 5</td>
</tr>
</tbody>
</table>

The leakage currents are measured without any load on the shaft and in accordance with EN 61800-5-1:2007.

Inputs and outputs

Earth reference, GND
All voltages refer to GND.
All currents return to GND.

Absolute maximum voltage and current limits
Exceeding the following electrical limits may result in severely reduced operating reliability and motor life:

Relay 1:
- Maximum contact load: 250 VAC, 2 A or 30 VDC, 2 A.
Relay 2:
- Maximum contact load: 30 VDC, 2 A.
- GENI terminals: -5.5 to 9.0 VDC or less than 25 mADC.
- Other input or output terminals: -0.5 to 26 VDC or less than 15 mADC.

Digital inputs, DI
- Internal pull-up current greater than 10 mA at Vᵢ equal to 0 VDC.
- Internal pull-up to 5 VDC (current less for Vᵢ greater than 5 VDC).
- Low logic level: Vᵢ less than 1.5 VDC.
- High logic level: Vᵢ greater than 3.0 VDC.
- Hysteresis: No.
- Screened cable: 0.5 - 1.5 mm², 28-16 AWG.
- Maximum cable length: 1640 ft (500 m).

Open-collector digital outputs, OC
- Current sinking capability: 75 mADC, no current sourcing.
- Load types: Resistive or/and inductive.
- Low-state output voltage at 75 mADC: Maximum 1.2 VDC.
- Low-state output voltage at 10 mADC: Maximum 0.6 VDC.
- Overcurrent protection: Yes.
- Screened cable: 0.5 - 1.5 mm², 28-16 AWG.
- Maximum cable length: 1640 ft (500 m).

Analog inputs, AI
- Voltage signal ranges:
 - 0.5 - 3.5 VDC, AL AU.
 - 0-5 VDC, AU.
 - 0-10 VDC, AU.
- Voltage signal: Rᵢ greater than 100 kΩ at 25 °C.
- Leak currents may occur at high operating temperatures. Keep the source impedance low.
Motors with built-in VFD

Current signal ranges:
- 0-20 mA DC, AU.
- 4-20 mA DC, AL AU.

Current overload protection: Yes. Change to voltage signal.
Measurement tolerance: - 0/+ 3 % of full scale (maximum-point coverage).
Screened cable: 0.5 - 1.5 mm², 28-16 AWG.
Maximum cable length: 1640 ft (500 m) (excl. potentiometer).
Potentiometer connected to +5 V, GND, any AI:
Use maximum 10 kΩ.
Maximum cable length: 328 ft (100 m).

Analog output, AO
Current sourcing capability only.
Voltage signal:
- Range: 0-10 VDC.
- Minimum load between AO and GND: 1 kΩ.
- Short-circuit protection: Yes.
Current signal:
- Ranges: 0-20 and 4-20 mA DC.
- Maximum load between AO and GND: 500 Ω.
- Open-circuit protection: Yes.
Tolerance: - 0/+ 4 % of full scale (maximum-point coverage).
Screened cable: 0.5 - 1.5 mm², 28-16 AWG.
Maximum cable length: 1640 ft (500 m).

Pt100/1000 inputs, PT
Temperature range:
- Minimum -22 °F (-30 °C). 88 Ω / 882 Ω.
- Maximum 356 °F (180 °C). 168 Ω / 1685 Ω.
Measurement tolerance: ± 35 °F (1.5 °C).
Measurement resolution: < 33 °F (0.3 °C).
Automatic range detection, Pt100 or Pt1000: Yes.
Sensor fault alarm: Yes.
Screened cable: 0.5 - 1.5 mm², 28-16 AWG.
Use Pt100 for short wires.
Use Pt1000 for long wires.

LiqTec sensor inputs*
Use Grundfos LiqTec sensor only.
Screened cable: 0.5 - 1.5 mm², 28-16 AWG.

Grundfos Digital Sensor input and output, GDS*
Use Grundfos Digital Sensor only.
* Only applicable for TPE3, TPE3 D pumps.

Power supplies
+5 V:
- Output voltage: 5 VDC - 5 %/+ 5 %.
- Maximum current: 50 mA DC, sourcing only.
- Overload protection: Yes.
+24 V:
- Output voltage: 24 VDC - 5 %/+ 5 %.
- Maximum current: 60 mA DC, sourcing only.
- Overload protection: Yes.

Digital outputs, relays
Potential-free changeover contacts.
Minimum contact load when in use: 5 VDC, 10 mA.
Screened cable: 0.5 - 2.5 mm², 28-12 AWG.
Maximum cable length: 1640 ft (500 m).

Bus input
Grundfos GENIbus protocol, RS-485.
Screened 3-core cable: 0.5 - 1.5 mm², 28-16 AWG.
Maximum cable length: 1640 ft (500 m).

EMC, electromagnetic compatibility
Standard used: EN 61800-3.
The table below shows the emission category of the motor.
C1 fulfils the requirements for residential areas.
The impedance of the mains cables between the motor and the point of common coupling (PCC) must be equivalent to the impedance of a 164 ft (50 m) cable with a cross-section of .02 in (0.5 mm).
C3 fulfils the requirements for industrial areas.

Note: When the motors are installed in residential areas, supplementary measures may be required as the motors may cause radio interference.

<table>
<thead>
<tr>
<th>Motor [hp (kW)]</th>
<th>Emission category</th>
<th>1450-2000 min⁻¹</th>
<th>2900-4000 min⁻¹</th>
<th>4000-5900 min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33 (0.25)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>0.5 (0.37)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>0.75 (0.55)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>1 (0.75)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>1.5 (1.1)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>2 (1.5)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>3 (2.2)</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td></td>
</tr>
</tbody>
</table>

* C1, if equipped with an external Grundfos EMC filter.

Immunity: The motor fulfils the requirements for industrial areas.
Contact Grundfos for further information.
Enclosure class
Standard: IP55 (IEC 34-5).
Optional: IP66 (IEC 34-5).

Insulation class
F (IEC 85).

Ambient temperature
During operation: -4 to 122 °F (-20 to 50 °C).
During storage and transportation: -22 to 140 °F (-30 to 60 °C).

Standby power consumption
5-10 W.

Sound pressure level
TPE2, TPE2 D, TPE3, TPE3 D

<table>
<thead>
<tr>
<th>Pump size</th>
<th>Sound pressure level ISO 3743 (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2/TPE3 40-80</td>
<td>52</td>
</tr>
<tr>
<td>TPE2/TPE3 40-120</td>
<td>59</td>
</tr>
<tr>
<td>TPE2/TPE3 40-150</td>
<td>60</td>
</tr>
<tr>
<td>TPE2/TPE3 40-180</td>
<td>63</td>
</tr>
<tr>
<td>TPE2/TPE3 40-200</td>
<td>65</td>
</tr>
<tr>
<td>TPE2/TPE3 40-240</td>
<td>66</td>
</tr>
<tr>
<td>TPE2/TPE3 50-60</td>
<td>48</td>
</tr>
<tr>
<td>TPE2/TPE3 50-80</td>
<td>56</td>
</tr>
<tr>
<td>TPE2/TPE3 50-120</td>
<td>60</td>
</tr>
<tr>
<td>TPE2/TPE3 50-150</td>
<td>60</td>
</tr>
<tr>
<td>TPE2/TPE3 50-180</td>
<td>63</td>
</tr>
<tr>
<td>TPE2/TPE3 50-200</td>
<td>64</td>
</tr>
<tr>
<td>TPE2/TPE3 50-240</td>
<td>66</td>
</tr>
<tr>
<td>TPE2/TPE3 65-60</td>
<td>44</td>
</tr>
<tr>
<td>TPE2/TPE3 65-80</td>
<td>51</td>
</tr>
<tr>
<td>TPE2/TPE3 65-120</td>
<td>59</td>
</tr>
<tr>
<td>TPE2/TPE3 65-150</td>
<td>62</td>
</tr>
<tr>
<td>TPE2/TPE3 65-180</td>
<td>62</td>
</tr>
<tr>
<td>TPE2/TPE3 65-200</td>
<td>62</td>
</tr>
<tr>
<td>TPE2/TPE3 80-40</td>
<td>43</td>
</tr>
<tr>
<td>TPE2/TPE3 80-120</td>
<td>53</td>
</tr>
<tr>
<td>TPE2/TPE3 80-150</td>
<td>62</td>
</tr>
<tr>
<td>TPE2/TPE3 80-180</td>
<td>64</td>
</tr>
<tr>
<td>TPE2/TPE3 100-40</td>
<td>43</td>
</tr>
<tr>
<td>TPE2/TPE3 100-120</td>
<td>53</td>
</tr>
<tr>
<td>TPE2/TPE3 100-150</td>
<td>62</td>
</tr>
<tr>
<td>TPE2/TPE3 100-180</td>
<td>64</td>
</tr>
</tbody>
</table>

Motor protection
The motor requires no external motor protection. The motor incorporates thermal protection against slow overloading and blocking.

Additional protection
The residual-current circuit breaker must be marked with the following symbol:

![Symbol](image)

The total leakage current of all the electrical equipment in the installation must be taken into account. You find the leakage current of the motor in *Leakage current* and *Leakage current, AC*, see page 79.

This product can cause a direct current in the protective-earth conductor.

Overvoltage and undervoltage protection
Overvoltage and undervoltage may occur in case of unstable power supply or a faulty installation. The motor is stopped if the voltage falls outside the permissible voltage range. The motor restarts automatically when the voltage is again within the permissible voltage range. Therefore, no additional protection relay is required.

Note: The motor is protected against transients from the power supply according to EN 61800-3. In areas with high lightning intensity, we recommend external lightning protection.

Overload protection
If the upper load limit is exceeded, the motor automatically compensates for this by reducing the speed and stops if the overload condition persists. The motor remains stopped for a set period. After this period, the motor automatically attempts to restart. The overload protection prevents damage to the motor. Consequently, no additional motor protection is required.

Overtemperature protection
The electronic unit has a built-in temperature sensor as an additional protection. When the temperature rises above a certain level, the motor automatically compensates for this by reducing the speed and stops if the temperature keeps rising. The motor remains stopped for a set period. After this period, the motor automatically attempts to restart.

Protection against phase unbalance
Three-phase motors must be connected to a power supply with a quality corresponding to IEC 60146-1-1, class C, to ensure correct motor operation at phase unbalance. This also ensures long life of the components.
Maximum number of starts and stops

The number of starts and stops via the power supply must not exceed four times per hour.

When switched on via the power supply, the pump starts after approximately 5 seconds.

If you want a higher number of starts and stops, use the input for external start-stop when starting or stopping the pump.

When you start a pump via an external on/off switch, the pump starts immediately.

Wiring diagrams

Single-phase supply:

![Fig. 69 Example of a mains-connected motor with main switch, backup fuse and additional protection](image)

Three-phase supply:

![Fig. 70 Example of a mains-connected motor with main switch, backup fuse and additional protection](image)

Connection terminals

The descriptions and terminal overviews in this section apply to both single-phase and three-phase motors.

Connection terminals, advanced functional module, FM 300

The advanced module has these connections:

- three analog inputs
- one analog output
- two dedicated digital inputs
- two configurable digital inputs or open-collector outputs
- input and output for Grundfos Digital Sensor
- Not applicable for TPE, Series 1000 and TPE2, TPE2 D pumps.
 - The factory-fitted differential-pressure sensor for TPE, Series 2000 and TPE3, TPE3 D pumps is connected to this input.
- two Pt100/1000 inputs
- two LiqTec sensor inputs
- two signal relay outputs
- GENIbus connection.

See fig. 71.

Note: Digital input 1 is factory-set to be start-stop input where open circuit results in stop. A jumper has been factory-fitted between terminals 2 and 6. Remove the jumper if digital input 1 is to be used as external start-stop or any other external function.

- **Inputs and outputs**
 - All inputs and outputs are internally separated from the mains-conducting parts by reinforced insulation and galvanically separated from other circuits.
 - All control terminals are supplied by protective extra-low voltage, PELV, thus ensuring protection against electric shock.

- **Signal relay outputs**
 - Signal relay 1:
 - LIVE: You can connect supply voltages up to 250 VAC.
 - PELV: The output is galvanically separated from other circuits. Therefore, you can connect the supply voltage or protective extra-low voltage to the output as desired.
 - Signal relay 2:
 - PELV: The output is galvanically separated from other circuits. Therefore, you can connect the supply voltage or protective extra-low voltage to the output as desired.

- **Mains supply, terminals N, PE, L or L1, L2, L3, PE.**
Motors with built-in VFD

TPE2, TPE2 D, TPE3, TPE3 D

If an external supply source is used, there must be a connection to GND.

Fig. 71 Connection terminals, FM 300, option
Motors with built-in VFD

Identification of functional module

You can identify the module in one of the following ways:

Grundfos GO
Select the "Fitted modules" menu under "Status".

Pump display
If the pump is fitted with the advanced control panel, select "Fitted modules" menu under "Status".

Motor nameplate
You can identify the fitted module on the motor nameplate. See fig. 72.

Fig. 72 Identification of functional module

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM 200</td>
<td>Standard functional module</td>
</tr>
<tr>
<td>FM 300</td>
<td>Advanced functional module</td>
</tr>
</tbody>
</table>
16. Electromagnetic compatibility, EMC

Proper installation

General information
The growing use of electric or electronic controls and electronic equipment including PLCs and computers within all business areas require these products to fulfil the existing standards within electromagnetic compatibility. Make sure that the equipment is mounted properly.
This section deals with these issues.

What is electromagnetic compatibility
Electromagnetic compatibility is the ability of an electric or electronic device to function in a given electromagnetic environment without disturbing the surroundings and without being disturbed by other devices in the surroundings. Electromagnetic compatibility is normally split into emission and immunity.

Emission
Emission is defined as the electric or electromagnetic noise emitted by a device during operation and which can reduce the function of other devices or disturb various radio communications, including radio or TV.

Immunity
Immunity is the ability of a device to function in spite of the presence of electric or electromagnetic noise, such as sparking noise from contactors or high-frequency fields from various transmitters or mobile phones.

E-pumps and electromagnetic compatibility
All Grundfos MLE motors are UL approved, under certain conditions, the Conditions of Acceptability (CoA) and FCC compliant indicating that the product is designed to meet the EMC regulations of the FCC and standards of UL 60730-1.

EMC and UL
All E-pumps are tested according to IEC 61800-3. All E-pumps are fitted with a radio-interference filter and varistors in the mains-supply input to protect the electronics against voltage peaks and noise present in the mains supply (immunity). At the same time, the filter limits the amount of electrical noise which the E-pump emits to the mains supply network (emission). All remaining inputs included in the electronic unit are also protected against peaks and noise which can damage or disturb the function of the unit.
On top of that, the mechanical and electronic designs are made in such a way that the unit can operate sufficiently under a certain level of radiated electromagnetic disturbance.
The limits which the E-pumps are tested against are listed in standard IEC 61800-3.

Where to install E-pumps
You can use all E-pumps with built-in frequency converter motors in both residential areas (first environment) and industrial areas (second environment) within certain limitations.
What is meant by the first and the second environment

The first environment, residential areas, includes establishments directly connected to a low-voltage power supply network which supplies domestic buildings.

The second environment, industrial areas, includes establishments which are not connected to a low-voltage network that supplies domestic buildings.

The level of electromagnetic disturbance can be much higher than in the first environment.

Electromagnetic compatibility and proper installation

With the UL approval, the E-pumps live up to and have been tested to meet specific EMC requirements. This, however, does not mean that E-pumps are immune to all the sources of noise to which they can be exposed in practice. In some installations, the impact may exceed the level to which the product is designed and tested.

Furthermore, unproblematic operation in a noisy environment presupposes that the installation of the E-pump is made properly.

You will find a description of a correct E-pump installation below.

Connection of mains supply

Practice shows that large cable loops are often made inside the terminal box to get some "spare cable". Of course, this can be useful. However, with regard to electromagnetic compatibility, it is a poor solution as these cable loops will function as antennas inside the terminal box.

To avoid problems with electromagnetic compatibility, the mains supply cable and its individual conductors in the terminal box of the E-pump must be as short as possible. If required, you can establish a spare cable outside the E-pump.
17. Curve charts

How to read the curve charts

- **Pump type and frequency.**

- **QH curve for the individual single-head pump.** The bold curve indicates the recommended performance range.

- **The power curve indicates the pump input power [P2].**

- **The NPSH (3 %) curve shows the maximum net positive suction head, NPSH, required to ensure that the pump head is not reduced by more than 3 %. The available system pressure at the pump inlet must be according to the NPSH (3 %) curve.**

- **The eta curve shows the pump efficiency.**
Curve conditions

The guidelines below apply to the curves shown on the following pages:

- Tolerances to ISO 9906:2012 Grade 3B.
- The curves apply to the performance of **single-head three-phase pumps**. For other pump versions, please see the exact curves in Grundfos Product Center. See page 114. For other pump versions, the performance may differ for the following reasons:
 - The valve in twin-head pumps may cause losses.
 - Single-phase motors run at lower speed.

 Note: Grundfos does not recommend continuous parallel operation of twin-head pumps, except TPE2 D, TPE3 D, due to the increased flow rate in the pump. A too high flow rate results in noisy operation, increased wear of the impeller due to cavitation, etc.

- QH curves of the individual single-head pumps are shown with expected speed of a three-phase mains-operated motor. For further information, see the tables of technical data on the following pages. The performance of the single-phase motor is slightly reduced. Please refer to Grundfos Product Center for the exact single-phase curves. See page 114.

- Measurements have been made with airless water at a temperature of 68 °F (20 °C).
- The curves apply to a kinematic viscosity of ν equal to 1 mm2/s (1 cSt).
- Due to the risk of overheating, the pump must not run constantly below the minimum flow rate indicated by the bold curves.
- If the pumped liquid density and/or viscosity are higher than those of water, it may be necessary to use a motor with a higher performance.
TPE2, TPE2 D, TPE3, TPE3 D
18. Performance curves and technical data

TPE2, TPE2 D, TPE3, TPE3 D, class 125

TPE2, TPE3 40
Temperature range: [°F (°C)]
- BQBE: 32 (0) - +248 (120)
- BQGE: -13 (-25) - +248 (120)

Technical data

Flow range: [US GPM (m³/hr)]
- 5.72 (1.3) - 158.4 (36)

Nominal head range: [ft (m)]
- 17.7 (5.4) - 61 (18.6)

Gross weight: [lbs (kg)]
- 64.6 (29.3) - 71.0 (32.2)

Maximum working pressure: [psi (bar)]
- 232 (16)
- Motors: SaVer 2 (FM300)

Temperature range: [°F (°C)]
- BQBE: 32 (0) - +248 (120)
- BQGE: -13 (-25) - +248 (120)

Flanges:
- 1 1/2"
- 2 bolt with (2) .5" dia. holes

Dimensions and weights

<table>
<thead>
<tr>
<th>Pump type</th>
<th>[hp (kW)]</th>
<th>Ph</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lbs (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2/3 40-60</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
<tr>
<td>TPE2/3 40-120</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
<tr>
<td>TPE2/3 40-150</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
<tr>
<td>TPE2/3 40-180</td>
<td>1 (0.75)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
<tr>
<td>TPE2/3 40-200</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
<tr>
<td>TPE2/3 40-240</td>
<td>2 (1.5)</td>
<td>1</td>
<td>4.8 (122)</td>
<td>6.22 (158)</td>
</tr>
</tbody>
</table>
Performance curves and technical data

TPE2, TPE3 50

- **H [m]**: Graph showing head (H) in meters vs. flow rate (Q) in US GPM.
- **H [ft]**: Graph showing head (H) in feet vs. flow rate (Q) in US GPM.
- **P2 [kW]**: Graph showing power (P2) in kilowatts vs. flow rate (Q) in US GPM.
- **P2 [hp]**: Graph showing power (P2) in horsepower vs. flow rate (Q) in US GPM.
- **H [m]**: Graph showing NPSH (net positive suction head) in meters vs. flow rate (Q) in US GPM.
- **Eff [%]**: Graph showing efficiency (Eff) in percent vs. flow rate (Q) in US GPM.
Technical data

<table>
<thead>
<tr>
<th>Flow range: [US GPM (m³/hr)]</th>
<th>7.0 (1.6) - 233.2 (53)</th>
<th>Max ambient air temperature: [°F (°C)]</th>
<th>122 (50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal head range: [ft (m)]</td>
<td>12.8 (3.9) - 64.3 (19.6)</td>
<td>Gross weight: [lbs (kg)]</td>
<td>725.5 (329.9) - 82.6 (37.45)</td>
</tr>
<tr>
<td>Maximum working pressure: [psi (bar)]</td>
<td>232 (16)</td>
<td>Motors:</td>
<td>5AVET 2 (FM300)</td>
</tr>
<tr>
<td>Temperature range: [°F (°C)]</td>
<td>BQBE: 32 (0) - 248 (120)</td>
<td>BQQE: -13 (-25) - 248 (120)</td>
<td>Flanges:</td>
</tr>
<tr>
<td></td>
<td>4 bolt with (4) .75" dia. holes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: The dotted QH curves apply to TPE2 D, TPE3 D in parallel operation.
Dimensions and weights

<table>
<thead>
<tr>
<th>Pump type</th>
<th>hp [kW]</th>
<th>Dual head</th>
<th>Ph</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lbs (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE 2/3 (D) 65-60</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
<td>5.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
<td>4.17</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
<td>5.28</td>
<td>5.28</td>
</tr>
<tr>
<td>TPE 2/3 (D) 65-120</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75 (0.55)</td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
<td>5.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
<td>4.17</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
<td>5.28</td>
<td>5.28</td>
</tr>
</tbody>
</table>
Technical data

<table>
<thead>
<tr>
<th>Pump Type</th>
<th>[hp (kW)]</th>
<th>Phase</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lbs (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE 2/3 D 65-60</td>
<td>0.5 (0.37)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
<tr>
<td>TPE 2/3 D 65-80</td>
<td>0.75 (0.55)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
<tr>
<td>TPE 2/3 D 65-120</td>
<td>1.0 (0.75)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
<tr>
<td>TPE 2/3 D 65-150</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
<tr>
<td>TPE 2/3 D 65-180</td>
<td>2 (1.5)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
<tr>
<td>TPE 2/3 D 65-200</td>
<td>3 (2.2)</td>
<td>1</td>
<td>B3 10.24 (260) 12.48 (317) 10.24 (260)</td>
<td>3.62 (92) 8.58 (218) 3.62 (92) 5.12 (130)</td>
</tr>
</tbody>
</table>

Technical data

- **Flow range:** [US GPM (m³/hr)] 8.8 (2.0) - 264 (60)
- **Max ambient air temperature:** [°F (°C)] 122 (50)
- **Nominal head range:** [ft (m)] 11.2 (3.4) - 47.9 (14.6)
- **Gross weight:** [lbs (kg)] 81.6 (37) - 166.7 (75.6)
- **Maximum working pressure:** [psi (bar)] 232 (16)
- **Motors:** SaVer 2 (FM300)
- **Temperature range:** [°F (°C)] BQBE: 32 (0) - +248 (120) BQQE: -13 (-25) - +248 (120)
- **Flanges:** 2.5" 4 bolt with (4) .75" dia. holes
Note: The dotted QH curves apply to TPE2 D, TPE3 D in parallel operation.
Dimensions and weights

<table>
<thead>
<tr>
<th>Pump type [hp (kW)]</th>
<th>Dial head [mm]</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lbs (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>AC</td>
<td>AD</td>
<td>AE</td>
</tr>
<tr>
<td>TPE 2/3 (D) 80-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.33 (0.25)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td>TPE 2/3 (D) 80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 (1.1)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td>TPE 2/3 (D) 80-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (1.5)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td>TPE 2/3 (D) 80-180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (2.2)</td>
<td>1</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>6.22</td>
</tr>
<tr>
<td>Pump Type</td>
<td>[hp (kW)]</td>
<td>Phase</td>
<td>Dimensions [in (mm)]</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>TPE 2/3 D 80-40</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>B3 (260) B4 (317) C1 (10.24 (260) C5 (4.02 (102) C6 (8.58 (218) C7 (4.02 (102) C8 (5.12 (130) M (M12</td>
</tr>
<tr>
<td>TPE 2/3 D 80-120</td>
<td>1.5 (1.1)</td>
<td>3</td>
<td>B3 (260) B4 (317) C1 (10.24 (260) C5 (4.02 (102) C6 (8.58 (218) C7 (4.02 (102) C8 (5.12 (130) M (M12</td>
</tr>
<tr>
<td>TPE 2/3 D 80-150</td>
<td>2 (1.5)</td>
<td>3</td>
<td>B3 (260) B4 (317) C1 (10.24 (260) C5 (4.02 (102) C6 (8.58 (218) C7 (4.02 (102) C8 (5.12 (130) M (M12</td>
</tr>
<tr>
<td>TPE 2/3 D 80-180</td>
<td>3 (2.2)</td>
<td>3</td>
<td>B3 (260) B4 (317) C1 (10.24 (260) C5 (4.02 (102) C6 (8.58 (218) C7 (4.02 (102) C8 (5.12 (130) M (M12</td>
</tr>
</tbody>
</table>
Note: The dotted QH curves apply to TPE2 D, TPE3 D in parallel operation.
Performance curves and technical data

Dimensions and weights

<table>
<thead>
<tr>
<th>Pump type</th>
<th>[hp (kW)]</th>
<th>Ph</th>
<th>Dual head</th>
<th>Dimensions [in (mm)]</th>
<th>Dual head</th>
<th>Dimensions [in (mm)]</th>
<th>Net weight [lbs (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE 2/3 (D) 100-150</td>
<td>2 (1.5)</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>72.7</td>
</tr>
<tr>
<td>TPE 2/3 (D) 100-120</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>70.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>74.3</td>
</tr>
<tr>
<td>TPE 2/3 (D) 100-40</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 3.86 (98)</td>
<td>4.92 (125) 3.94 (100) 6.14 (156) 7.52 (191) 8.66 (220) 0.75 (19) 4.02 (102) 7.44 (189)</td>
<td>19.92 (506) 17.7 (450)</td>
<td>6.5 (165)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>1</td>
<td>4.8 (122) 6.22 (158) 4.17 (106) 4.17 (106) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>70.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.8 (122) 6.22 (158) 5.28 (134) 5.28 (134) 9.92 (252)</td>
<td>10.43 (265) 3.94 (100) 6.3 (156) 6.69 (191) 8.66 (220) 0.75 (19) 4.09 (104) 7.44 (189)</td>
<td>20 (194) 17.7 (508) 6.5 (450)</td>
<td>74.3</td>
</tr>
</tbody>
</table>

Notes:
- Dimensions and weights are approximate and may vary depending on specific model and configuration.
- **Ph:** Performance characteristic.
- **AC:** Axial clearance.
- **AD:** Axial deflection.
- **AE:** Axial extension.
- **AF:** Axial flex.
- **B1:** Backlash 1.
- **B2:** Backlash 2.
- **D1:** Diameter 1.
- **D2:** Diameter 2.
- **D3:** Diameter 3.
- **D4:** Diameter 4.
- **D5:** Diameter 5.
- **H1:** Height 1.
- **H2:** Height 2.
- **H3:** Height 3.
- **L1:** Length 1.
- **P:** Pitch.
Technical data

<table>
<thead>
<tr>
<th>Pump Type</th>
<th>[hp (kW)]</th>
<th>Phase</th>
<th>Dimensions [in (mm)]</th>
<th>Technical data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>B3</td>
<td>B4</td>
</tr>
<tr>
<td>TPE 2/3 D 100-40</td>
<td>0.33 (0.25)</td>
<td>1</td>
<td>10.63 (270)</td>
<td>12.68 (322)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10.63 (270)</td>
<td>13.46 (342)</td>
</tr>
<tr>
<td>TPE 2/3 D 100-120</td>
<td>1.5 (1.1)</td>
<td>1</td>
<td>10.63 (270)</td>
<td>12.68 (322)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10.63 (270)</td>
<td>13.46 (342)</td>
</tr>
<tr>
<td>TPE 2/3 D 100-150</td>
<td>2 (1.5)</td>
<td>1</td>
<td>10.63 (270)</td>
<td>12.68 (322)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10.63 (270)</td>
<td>13.46 (342)</td>
</tr>
<tr>
<td>TPE 2/3 D 100-180</td>
<td>3 (2.2)</td>
<td>3</td>
<td>10.63 (270)</td>
<td>13.46 (342)</td>
</tr>
</tbody>
</table>

Technical data:

- **Flow range**: [US GPM (m³/hr)] 1.32 (0.3) - 352 (80)
- **Max ambient air temperature**: [°F (°C)] 122 (50)
- **Nominal head range**: [ft (m)] 9.8 (3) - 41.7 (12.7)
- **Gross weight**: [lbs (kg)] 97.4 (44.2) - 214.1 (97.1)
- **Flanges**: 4" 8 bolt with (8) .75" dia. holes
- **Temperature range**: BQBE: 32 (0) - +248 (120)
 - BQQE: -13 (-25) - +248 (120)
- **Motors**: SaVer 2 (FM300)
19. Weights and shipping volume

TPE2, TPE2 D, TPE3, TPE3 D

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Connection</th>
<th>Net [lb (kg)]</th>
<th>Gross [lb (kg)]</th>
<th>Shipping volume [ft³ (m³)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D₁D</td>
<td>D₁S</td>
<td>TPE2, TPE3</td>
<td>TPE2, TPE3 D</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-80</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>55 (25)</td>
<td>101 (46)</td>
<td>73 (33)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-120</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>55 (25)</td>
<td>101 (46)</td>
<td>73 (33)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-150</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>55 (25)</td>
<td>101 (46)</td>
<td>73 (33)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-180</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>55 (25)</td>
<td>101 (46)</td>
<td>73 (33)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-200</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>55 (25)</td>
<td>101 (46)</td>
<td>73 (33)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-240</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-280</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-320</td>
<td>ANSI 1.5" ANSI 1.5"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-60</td>
<td>ANSI 2" ANSI 2"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-80</td>
<td>ANSI 2" ANSI 2"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-120</td>
<td>ANSI 2" ANSI 2"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-150</td>
<td>ANSI 2" ANSI 2"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-180</td>
<td>ANSI 2" ANSI 2"</td>
<td>60 (27)</td>
<td>108 (49)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-200</td>
<td>ANSI 2" ANSI 2"</td>
<td>64 (29)</td>
<td>115 (52)</td>
<td>82 (37)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-240</td>
<td>ANSI 2" ANSI 2"</td>
<td>66 (30)</td>
<td>119 (54)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-300</td>
<td>ANSI 2" ANSI 2"</td>
<td>66 (30)</td>
<td>119 (54)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-400</td>
<td>ANSI 2" ANSI 2"</td>
<td>66 (30)</td>
<td>119 (54)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-60</td>
<td>ANSI 2.5" ANSI 2.5"</td>
<td>64 (29)</td>
<td>115 (52)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-80</td>
<td>ANSI 2.5" ANSI 2.5"</td>
<td>64 (29)</td>
<td>115 (52)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-120</td>
<td>ANSI 2.5" ANSI 2.5"</td>
<td>64 (29)</td>
<td>115 (52)</td>
<td>84 (38)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-150</td>
<td>ANSI 2.5" ANSI 2.5"</td>
<td>66 (30)</td>
<td>119 (54)</td>
<td>86 (39)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-180</td>
<td>ANSI 2.5" ANSI 2.5"</td>
<td>68 (31)</td>
<td>123 (56)</td>
<td>88 (40)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 75-60</td>
<td>ANSI 3" ANSI 3"</td>
<td>77 (35)</td>
<td>132 (60)</td>
<td>97 (44)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 75-80</td>
<td>ANSI 3" ANSI 3"</td>
<td>79 (36)</td>
<td>134 (61)</td>
<td>99 (45)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 75-100</td>
<td>ANSI 3" ANSI 3"</td>
<td>84 (38)</td>
<td>143 (65)</td>
<td>101 (46)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 75-120</td>
<td>ANSI 3" ANSI 3"</td>
<td>86 (39)</td>
<td>146 (67)</td>
<td>106 (48)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-40</td>
<td>ANSI 4" ANSI 4"</td>
<td>88 (40)</td>
<td>150 (68)</td>
<td>106 (48)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-100</td>
<td>ANSI 4" ANSI 4"</td>
<td>88 (40)</td>
<td>154 (70)</td>
<td>108 (49)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-150</td>
<td>ANSI 4" ANSI 4"</td>
<td>93 (42)</td>
<td>161 (73)</td>
<td>112 (51)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 80-200</td>
<td>ANSI 4" ANSI 4"</td>
<td>95 (43)</td>
<td>168 (76)</td>
<td>115 (52)</td>
</tr>
</tbody>
</table>
20. Accessories

Base plates

Note: TPE2, TPE3 pumps are not designed to be supplied with a base plate.

TPE2 D, TPE3 D

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Hexagon head screws</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2 D, TPE3 D 65</td>
<td>3 x M12 x 40 mm</td>
<td>99150056</td>
</tr>
<tr>
<td>TPE2 D, TPE3 D 80</td>
<td>3 x M12 x 16 mm</td>
<td>99150057</td>
</tr>
</tbody>
</table>

Insulating kits

Insulating kits are available for TPE2 and TPE3 pumps.

The insulating kit consists of two shells.

The insulating kit is tailored to the individual pump model and encloses the entire pump housing, thus providing optimum insulation.

Kits for TPE2, TPE3 pumps

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE2, TPE3 40-80/120/150/180/200/240</td>
<td>98159368</td>
</tr>
<tr>
<td>TPE2, TPE3 50-60/80/120/150/180/200/240</td>
<td>98159367</td>
</tr>
<tr>
<td>TPE2, TPE3 65-60/80/120/150/180/200</td>
<td>98159361</td>
</tr>
<tr>
<td>TPE2, TPE3 80-40/120/150/180</td>
<td>98159363</td>
</tr>
<tr>
<td>TPE2, TPE3 100-40/120/150/180</td>
<td>98159362</td>
</tr>
</tbody>
</table>
Sensors

Flow sensors

<table>
<thead>
<tr>
<th>Grundfos Vortex flow sensor, VFI</th>
<th>Type</th>
<th>Flow range [GPM (m³/h)]</th>
<th>Pipe connection</th>
<th>O-ring</th>
<th>Connection type</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI 2-40 020 E</td>
<td></td>
<td>9 (2)-176 (40)</td>
<td>ANSI 1.5"</td>
<td>•</td>
<td>•</td>
<td>97686143</td>
</tr>
<tr>
<td>VFI 2-40 020 F</td>
<td></td>
<td>9 (2)-176 (40)</td>
<td>ANSI 1.5"</td>
<td>•</td>
<td>•</td>
<td>97686144</td>
</tr>
<tr>
<td>VFI 3.2-64 020 E</td>
<td></td>
<td>9 (2)-282 (64)</td>
<td>ANSI 2"</td>
<td>•</td>
<td>•</td>
<td>97686145</td>
</tr>
<tr>
<td>VFI 3.2-64 020 F</td>
<td></td>
<td>9 (2)-282 (64)</td>
<td>ANSI 2"</td>
<td>•</td>
<td>•</td>
<td>97686146</td>
</tr>
<tr>
<td>VFI 5.2-104 020 E</td>
<td></td>
<td>23 (5.2)-458 (104)</td>
<td>ANSI 2.5"</td>
<td>•</td>
<td>•</td>
<td>97686147</td>
</tr>
<tr>
<td>VFI 5.2-104 020 F</td>
<td></td>
<td>23 (5.2)-458 (104)</td>
<td>ANSI 2.5"</td>
<td>•</td>
<td>•</td>
<td>97686148</td>
</tr>
<tr>
<td>VFI 8-160 020 E</td>
<td></td>
<td>35 (8)-704 (160)</td>
<td>ANSI 3"</td>
<td>•</td>
<td>•</td>
<td>97686149</td>
</tr>
<tr>
<td>VFI 8-160 020 F</td>
<td></td>
<td>35 (8)-704 (160)</td>
<td>ANSI 3"</td>
<td>•</td>
<td>•</td>
<td>97686150</td>
</tr>
<tr>
<td>VFI 12-240 020 E</td>
<td></td>
<td>53 (12)-1056 (240)</td>
<td>ANSI 4"</td>
<td>•</td>
<td>•</td>
<td>97686151</td>
</tr>
<tr>
<td>VFI 12-240 020 F</td>
<td></td>
<td>53 (12)-1056 (240)</td>
<td>ANSI 4"</td>
<td>•</td>
<td>•</td>
<td>97686152</td>
</tr>
</tbody>
</table>

- Sensor tube with sensor tube of 1.4408 and sensor of 1.4404
- 4-20 mA output signal
- 2 flanges
- 16 ft (5 m) cable with M12 connection in one end

For more information about the VFI sensor, see the data booklet "Grundfos direct sensors", publication number 97790189.
Temperature sensors

Temperature sensor, TTA

Temperature sensor with Pt100 temperature sensor fitted in a $\varnothing 6 \times 100$ mm measuring tube made of stainless steel, ASTM 316Ti (DIN 1.4571) and a 4-20 mA sensor built into a type B head DIN 43.729.

The connecting head is made of painted pressure die-cast aluminium with Pg 16 screwed connection, stainless screws and neoprene rubber gasket.

The sensor is built into the system either by means of a cutting ring bush or by means of one of the two matching protecting tubes $\varnothing 9 \times 100$ mm or $\varnothing 9 \times 50$ mm, respectively.

The protecting tube has a G 1/2 connection.

Cutting ring bush or protecting tube must be ordered separately.

Technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>TTA (-25) 25</th>
<th>TTA (0) 25</th>
<th>TTA (0) 150</th>
<th>TTA (50) 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product number</td>
<td>96430194</td>
<td>96432591</td>
<td>96430195</td>
<td>96432592</td>
</tr>
<tr>
<td>Measuring range</td>
<td>-13 to +77 °F</td>
<td>32 to +77 °F</td>
<td>32 to +302 °F</td>
<td>122 to 212 °F</td>
</tr>
<tr>
<td>(-25 to +25 °C)</td>
<td>(0 to +25 °C)</td>
<td>(0 to +150 °C)</td>
<td>(50 to +100 °C)</td>
<td></td>
</tr>
<tr>
<td>Measuring accuracy</td>
<td>According to IEC 751, class B, 32.5 °F (0.3 °C) at 32 °F (0 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time, τ (0.9) in water 0.2 m/s</td>
<td>Without protecting tube: 28 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With oil-filled protecting tube: 75 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output signal</td>
<td>4-20 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>8-35 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC, electromagnetic compatibility</td>
<td>Emission: According to EN 50081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immunity: According to EN 50082</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Type</th>
<th>Protecting tube $\varnothing 9 \times 50$ mm</th>
<th>Protecting tube $\varnothing 9 \times 100$ mm</th>
<th>Cutting ring bush $\varnothing 6 \times 100$ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product number</td>
<td>96430201</td>
<td>96430202</td>
<td>96430203</td>
</tr>
<tr>
<td>Description</td>
<td>Protecting tube of stainless steel SINOX SSH 2 for $\varnothing 6$ mm measuring tube. Pipe connection G 1/2.</td>
<td>Cutting ring bush for $\varnothing 6$ mm measuring tube. Pipe connection G 1/2.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 74 Dimensional sketch
Differential-temperature sensor, HONSBERG

The temperature sensors T1 and T2 measure the temperature in their respective location at the same time. Besides the temperature measurement, the T1 features an electronic unit calculating the temperature difference between T1 and T2 and transmitting the result as a 4-20 mA signal via a current amplifier.

As the measured signal transmitted from the T2 is also a current signal, a relatively large distance is allowed between T2 and T1.

As appears from fig. 75, it has no effect on the output signal, I_{out}, which of the sensors that measures the highest temperature.

Thus, the current signal generated will always be positive between 4 and 20 mA.

Technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>ETS10-0400K045 + ETS20-K045</th>
<th>ETS10-0500K045 + ETS20-K045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product number</td>
<td>96409362</td>
<td>96409363</td>
</tr>
<tr>
<td>Measuring range: Temperature difference (T1-T2) or (T2-T1)</td>
<td>32 to 68 °F (0 to +20 °C)</td>
<td>32 to 122 °F (0 to +50 °C)</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>15-30 VDC</td>
<td></td>
</tr>
<tr>
<td>Output signal</td>
<td>4-20 mA</td>
<td></td>
</tr>
<tr>
<td>Measuring accuracy</td>
<td>± 0.3 % FS</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>± 1 % FS</td>
<td></td>
</tr>
<tr>
<td>Response time, τ (0.9)</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-13 to 185 °F (-25 to +85 °C)</td>
<td></td>
</tr>
<tr>
<td>Operating temperature of T1 and T2</td>
<td>-13 to 221 °F (-25 to +105 °C)</td>
<td></td>
</tr>
<tr>
<td>Maximum distance between T1 and T2</td>
<td>984 ft (300 m) with screened cable</td>
<td></td>
</tr>
<tr>
<td>Electrical connection</td>
<td>Between T1 and T2: M12 x 1 plug, output signal with DIN 43650-A plug type</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-49 to 257 °F (-45 to +125 °C)</td>
<td></td>
</tr>
<tr>
<td>Short-circuit-proof</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Protected against polarity reversal</td>
<td>Yes, up to 40 V</td>
<td></td>
</tr>
<tr>
<td>Materials in contact with liquid</td>
<td>Stainless steel, ASTM 316 Ti (DIN 1.4571)</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP65</td>
<td></td>
</tr>
<tr>
<td>EMC, electromagnetic compatibility</td>
<td>Emission: According to EN 50081</td>
<td>Immunity: According to EN 50082</td>
</tr>
</tbody>
</table>
Installing the sensor

Fit the two sensors in such a way that the sensing elements are located in the middle of the flow of the liquid to be measured.

For tightening, use only the hexagon nut.

You can turn the upper part of the sensors to any position suitable for the connection of cables.

The sensors have a G 1/2 thread. See fig. 76.

Ambient temperature sensor

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Type</th>
<th>Supplier</th>
<th>Measuring range</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature sensor, ambient temperature</td>
<td>WR 52</td>
<td>tmg</td>
<td>-58 to 122 °F (-50 to +50 °C)</td>
<td>ID8295</td>
</tr>
</tbody>
</table>
Pressure sensors

Sensors for boosting applications

<table>
<thead>
<tr>
<th>Danfoss pressure sensor kit</th>
<th>Pressure range [psi (bar)]</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Connection: G 1/2 A, DIN 16288 - B6kt</td>
<td>0-36 (2.5)</td>
<td>96478188</td>
</tr>
<tr>
<td>• Electrical connection: plug DIN 43650</td>
<td>0-58 (4)</td>
<td>91072075</td>
</tr>
<tr>
<td></td>
<td>0-87 (6)</td>
<td>91072076</td>
</tr>
<tr>
<td></td>
<td>0-145 (10)</td>
<td>91072077</td>
</tr>
<tr>
<td></td>
<td>0-232 (16)</td>
<td>91072078</td>
</tr>
<tr>
<td>• Pressure sensor, type MBS 3000, with 7 ft (2 m) screened cable</td>
<td>0-36 (2.5)</td>
<td>405159</td>
</tr>
<tr>
<td>Connection: G 1/4 A, DIN 16288 - B6kt</td>
<td>0-58 (4)</td>
<td>405160</td>
</tr>
<tr>
<td>• 5 cable clips, black</td>
<td>0-87 (6)</td>
<td>405161</td>
</tr>
<tr>
<td>• Fitting instructions PT, 00400212</td>
<td>0-145 (10)</td>
<td>405162</td>
</tr>
<tr>
<td></td>
<td>0-232 (16)</td>
<td>405163</td>
</tr>
</tbody>
</table>

Sensors for circulation applications

<table>
<thead>
<tr>
<th>Grundfos differential pressure sensor, DPI</th>
<th>Pressure range [psi (bar)]</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 sensor including 0.9 m screened cable, 7/16” connections</td>
<td>0-9 (0.6)</td>
<td>96611522</td>
</tr>
<tr>
<td>• 1 original DPI bracket for wall mounting</td>
<td>0-14.5 (1)</td>
<td>96611523</td>
</tr>
<tr>
<td>• 1 Grundfos bracket for mounting on motor</td>
<td>0-23 (1.6)</td>
<td>96611524</td>
</tr>
<tr>
<td>• 2 M4 screws for mounting of sensor on bracket</td>
<td>0-36 (2.5)</td>
<td>96611525</td>
</tr>
<tr>
<td>• 1 M8 screw, self-cutting, for mounting on MLE 90/100</td>
<td>0-58 (4)</td>
<td>96611526</td>
</tr>
<tr>
<td>• 1 M10 screw, self-cutting, for mounting on MLE 160</td>
<td>0-87 (6)</td>
<td>96611527</td>
</tr>
<tr>
<td>• 3 capillary tubes, short/long</td>
<td>0-145 (10)</td>
<td>96611550</td>
</tr>
<tr>
<td>• 2 fittings, 1/4” - 7/16”</td>
<td>0-232 (16)</td>
<td>96491010</td>
</tr>
<tr>
<td>• 5 cable clips, black</td>
<td>Installation and operating instructions</td>
<td>Service kit instruction</td>
</tr>
</tbody>
</table>

Select the differential pressure sensor so that the maximum pressure of the sensor is higher than the maximum differential pressure of the pump.

External Grundfos sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Type</th>
<th>Supplier</th>
<th>Measuring range [psi (bar)]</th>
<th>Transmitter output [mA]</th>
<th>Power supply [VDC]</th>
<th>Process connection</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure transmitter</td>
<td>RPI</td>
<td>Grundfos</td>
<td>0-9 (0.6)</td>
<td>4-20</td>
<td>12-30</td>
<td>G 1/2</td>
<td>97748907</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 - 14.5 (1)</td>
<td></td>
<td></td>
<td></td>
<td>97748908</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-23 (1.6)</td>
<td></td>
<td></td>
<td></td>
<td>97748909</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-36 (2.5)</td>
<td></td>
<td></td>
<td></td>
<td>97748910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-58 (4)</td>
<td></td>
<td></td>
<td></td>
<td>97748921</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-87 (6)</td>
<td></td>
<td></td>
<td></td>
<td>97748922</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-174 (12)</td>
<td></td>
<td></td>
<td></td>
<td>97748923</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-232 (16)</td>
<td></td>
<td></td>
<td></td>
<td>97748924</td>
</tr>
</tbody>
</table>

Sensor interface

<table>
<thead>
<tr>
<th>Sensor interface, SI 001 PSU¹</th>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundfos Direct Sensors™, type SI 001 PSU, is an external power supply for the VFI, DPI and other transmitters with 24 VDC supply voltage.</td>
<td>The power supply is used when the cable between transmitter and controller is more than 98 ft (30 m) long.</td>
<td>96915820</td>
</tr>
</tbody>
</table>

¹ For further information about the PSU sensor interface, see the installation and operating instructions, “SI 001 PSU - sensor interface” publication number 96944355, or quick guide, publication number 96944356.
Potentiometer

![Fig. 77 Potentiometer](image)

Potentiometer for setpoint setting and start/stop of the pump.

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>External potentiometer with cabinet for wall mounting</td>
<td>625468</td>
</tr>
</tbody>
</table>

Grundfos GO

Grundfos GO is used for wireless infrared or radio communication with the pumps. Various Grundfos GO variants are available. The variants are described in the following.

MI 204

MI 204 is an add-on module with built-in infrared and radio communication.

You can use MI 204 in conjunction with an Apple iPhone or iPod with Lightning connector.

MI 204 is also available together with an Apple iPod touch and a cover.

![Fig. 78 MI 204](image)

Supplied with the product:
- Grundfos MI 204
- sleeve
- quick guide
- charger cable.

MI 301

MI 301 is a module with built-in infrared and radio communication. Use MI 301 in conjunction with Android or iOS-based smart devices with a Bluetooth connection. MI 301 has rechargeable Li-ion battery and you must charge it separately.

![Fig. 79 MI 301](image)

Supplied with the product:
- Grundfos MI 301
- sleeve
- battery charger
- quick guide.

Product numbers

<table>
<thead>
<tr>
<th>Grundfos GO variant</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundfos MI 204</td>
<td>98424092</td>
</tr>
<tr>
<td>Grundfos MI 204 including iPod touch</td>
<td>98612711</td>
</tr>
<tr>
<td>Grundfos MI 301</td>
<td>98046408</td>
</tr>
</tbody>
</table>
CIU communication interface units

The CIU units enable communication of operating data, such as measured values and setpoints, between TPE pumps and a building management system. The CIU unit incorporates a 24-240 VAC/VDC power supply module and a CIM module. You can mount the CIU unit on a DIN rail or on a wall. For further information see Communication on page 31.

We offer the following CIU units:

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIU 900</td>
<td>99448387</td>
</tr>
<tr>
<td>CIU 901</td>
<td>99448389</td>
</tr>
<tr>
<td>CIU 902</td>
<td>97644690</td>
</tr>
<tr>
<td>CIU 903</td>
<td>98106399</td>
</tr>
</tbody>
</table>

For further information about data communication via CIU units and fieldbus protocols, see the CIU documentation available in Grundfos Product Center. See page 114.

CIM communication interface modules

The CIM modules enable communication of operating data, such as measured values and setpoints, between TPE pumps and a building management system. The CIM modules are add-on communication modules which are fitted in the terminal box of TPE pumps. For further information see Communication on page 31.

Note: CIM modules must be fitted by authorized personnel.

We offer the following CIM modules:

<table>
<thead>
<tr>
<th>Description</th>
<th>Fieldbus protocol</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM 050</td>
<td>GENibus</td>
<td>96824631</td>
</tr>
<tr>
<td>CIM 100</td>
<td>LonWorks</td>
<td>96824797</td>
</tr>
<tr>
<td>CIM 150</td>
<td>PROFIBUS DP</td>
<td>96824793</td>
</tr>
<tr>
<td>CIM 200</td>
<td>Modbus RTU</td>
<td>96824796</td>
</tr>
<tr>
<td>CIM 260</td>
<td>3G/4G cellular</td>
<td>99439306</td>
</tr>
<tr>
<td>CIM 280</td>
<td>GRM G/G 3G/4G</td>
<td>99439725</td>
</tr>
<tr>
<td>CIM 300</td>
<td>BACnet MS/TP</td>
<td>96893770</td>
</tr>
<tr>
<td>CIM 500</td>
<td>PROFINET</td>
<td></td>
</tr>
<tr>
<td>CIM 500</td>
<td>Modbus TCP</td>
<td></td>
</tr>
<tr>
<td>CIM 500</td>
<td>BACnet IP</td>
<td></td>
</tr>
<tr>
<td>CIM 500</td>
<td>EtherNet/IP</td>
<td></td>
</tr>
<tr>
<td>CIM 500</td>
<td>GRM IP</td>
<td>98301408</td>
</tr>
</tbody>
</table>

* Antenna not included. See below.

Antennas for CIM 260 and 280

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna (puc) 3G/4G for CIM 260/280</td>
<td>99518079</td>
</tr>
</tbody>
</table>

For further information about data communication via CIM modules and fieldbus protocols, see the CIM documentation available in Grundfos Product Center. See page 114.
21. Minimum inlet pressure - NPSH

To ensure optimum and noiseless operation, we recommend that you use the minimum inlet pressure values shown on page 113.

A minimum inlet pressure is required to avoid pressure drop that may cause cavitation.

Use the following formula to calculate the minimum inlet pressure, \(p_s \) in bar relative. The pressure gauge value on the pump inlet side.

Note: Base the calculation of the minimum inlet pressure on the maximum required flow.

\[
\begin{align*}
p_s & \geq \left(\text{NPSH}_R \times \rho \times g - \frac{1}{2} \times \rho \times c^2 \right) \times 0.0001 - p_b + p_d \quad [\text{bar relative}] \\
\end{align*}
\]

- \(p_s \) = Minimum inlet pressure in bar.
- \(\text{NPSH}_R \) = The required Net Positive Suction Head in m head, to be read from the NPSH curve at the highest flow the pump will be delivering.
- \(\rho \) = Density of the pumped liquid measured in kg/m\(^3\).
- \(g \) = Gravitational acceleration measured in m/s. For estimated calculations use the value 9.81 m/s\(^2\).
- \(c \) = Flow velocity of the pumped liquid at the pressure gauge. Insert the flow velocity as the unit [m/s].

 See individual curve charts from page 159.
- \(p_b \) = Barometric pressure in bar.

 Set the barometric pressure to 0.97 bar.

 Note: Only occasionally the pressure is as high as 1 bar; this value is also at sea level.
- \(p_d \) = Vapor pressure in bar. See fig. 82.

Fig. 82 Minimum inlet pressure
Minimum Inlet Pressure - NPSH

<table>
<thead>
<tr>
<th>Pump type</th>
<th>p [psi (bar)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 °F (20 °C)</td>
<td>140 °F (60 °C)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-80</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-120</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-150</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-180</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-200</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-240</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-300</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 40-360</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-60</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-80</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-120</td>
<td>6 (0.4)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-150</td>
<td>8 (0.6)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-180</td>
<td>10 (0.7)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-200</td>
<td>13 (0.9)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 50-240</td>
<td>13 (0.9)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-60</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-80</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-120</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-150</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-180</td>
<td>4 (0.3)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-200</td>
<td>9 (0.6)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-300</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-360</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-480</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-600</td>
<td>4 (0.3)</td>
</tr>
<tr>
<td>TPE2, TPE2 D, TPE3, TPE3 D 65-720</td>
<td>9 (0.6)</td>
</tr>
</tbody>
</table>
22. Grundfos Product Center

Online search and sizing tool to help you make the right choice.

http://product-selection.grundfos.com

This drop-down menu enables you to set the search function to "Products" or "Literature".

"SIZING" enables you to size a pump based on entered data and selection choices.

"CATALOGUE" gives you access to the Grundfos product catalogue.

"REPLACEMENT" enables you to find a replacement product. Search results will include information on the following:
- the lowest purchase price
- the lowest energy consumption
- the lowest total life cycle cost.

"LIQUIDS" enables you to find pumps designed for aggressive, flammable or other special liquids.

All the information you need in one place
Performance curves, technical specifications, pictures, dimensional drawings, motor curves, wiring diagrams, spare parts, service kits, 3D drawings, documents, system parts. The Product Center displays any recent and saved items - including complete projects - right on the main page.

Downloads
On the product pages, you can download installation and operating instructions, data booklets, service instructions, etc. in PDF format.
Grundfos GO

Mobile solution for professionals on the GO!

Grundfos GO is the mobile tool box for professional users on the go. It is the most comprehensive platform for mobile pump control and pump selection including sizing, replacement and documentation. It offers intuitive, handheld assistance and access to Grundfos online tools, and it saves valuable time for reporting and data collection.