DMX 227

Installation and operating instructions
Declaration of Conformity

We Grundfos Alldos declare under our sole responsibility that the products DMX 227, to which this declaration relates, are in conformity with the Council Directives on the approximation of the laws of the EC Member States relating to

— Machinery (98/37/EC).
 Standard used: EN ISO 12100.

— Electrical equipment designed for use within certain voltage limits (73/23/EEC) [95].

Pfinztal, 1st April 2008

W. Schwald
Managing Director

Ulrich Stemick
Technical Director
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General information</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Service documentation</td>
<td>3</td>
</tr>
<tr>
<td>2. Installation data</td>
<td>4</td>
</tr>
<tr>
<td>3. Installation sketch</td>
<td>4</td>
</tr>
<tr>
<td>4. General information</td>
<td>5</td>
</tr>
<tr>
<td>4.1 Applications</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Warranty</td>
<td>5</td>
</tr>
<tr>
<td>5. Safety</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Identification of safety instructions in this manual</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Qualification and training of personnel</td>
<td>5</td>
</tr>
<tr>
<td>5.3 Risks when safety instructions are not observed</td>
<td>5</td>
</tr>
<tr>
<td>5.4 Safety-conscious working</td>
<td>5</td>
</tr>
<tr>
<td>5.5 Safety instructions for the operator/user</td>
<td>5</td>
</tr>
<tr>
<td>5.6 Safety instructions for maintenance, inspection and installation work</td>
<td>5</td>
</tr>
<tr>
<td>5.7 Unauthorised modification and manufacture of spare parts</td>
<td>5</td>
</tr>
<tr>
<td>5.8 Improper operating methods</td>
<td>6</td>
</tr>
<tr>
<td>5.9 Safety of the system in the event of a failure in the dosing system</td>
<td>6</td>
</tr>
<tr>
<td>6. Technical data</td>
<td>6</td>
</tr>
<tr>
<td>6.1 Identification</td>
<td>6</td>
</tr>
<tr>
<td>6.2 Type key</td>
<td>7</td>
</tr>
<tr>
<td>6.3 Pump types</td>
<td>8</td>
</tr>
<tr>
<td>6.4 Pump performance</td>
<td>8</td>
</tr>
<tr>
<td>6.5 Suction heights</td>
<td>9</td>
</tr>
<tr>
<td>6.6 Ambient and operating conditions</td>
<td>9</td>
</tr>
<tr>
<td>6.7 Dosing medium</td>
<td>9</td>
</tr>
<tr>
<td>6.8 Electrical data</td>
<td>9</td>
</tr>
<tr>
<td>6.9 Materials</td>
<td>9</td>
</tr>
<tr>
<td>6.10 Weights</td>
<td>9</td>
</tr>
<tr>
<td>6.11 Dimensional sketches</td>
<td>10</td>
</tr>
<tr>
<td>7. Transport and storage</td>
<td>11</td>
</tr>
<tr>
<td>7.1 Delivery</td>
<td>11</td>
</tr>
<tr>
<td>7.2 Intermediate storage</td>
<td>11</td>
</tr>
<tr>
<td>7.3 Unpacking</td>
<td>11</td>
</tr>
<tr>
<td>7.4 Return</td>
<td>11</td>
</tr>
<tr>
<td>8. Installation</td>
<td>12</td>
</tr>
<tr>
<td>8.1 Optimum installation</td>
<td>12</td>
</tr>
<tr>
<td>8.2 Installation tips</td>
<td>12</td>
</tr>
<tr>
<td>8.3 Mounting</td>
<td>13</td>
</tr>
<tr>
<td>8.4 Tube / pipe lines</td>
<td>13</td>
</tr>
<tr>
<td>8.5 Connecting the suction and discharge lines</td>
<td>13</td>
</tr>
<tr>
<td>9. Electrical connections</td>
<td>14</td>
</tr>
<tr>
<td>9.1 Connecting the motor</td>
<td>14</td>
</tr>
<tr>
<td>10. Commissioning</td>
<td>14</td>
</tr>
<tr>
<td>10.1 Checks before start-up</td>
<td>14</td>
</tr>
<tr>
<td>10.2 Start-up</td>
<td>14</td>
</tr>
<tr>
<td>11. Operation</td>
<td>15</td>
</tr>
<tr>
<td>11.1 Description of the pump</td>
<td>15</td>
</tr>
<tr>
<td>11.2 Switching on/off</td>
<td>15</td>
</tr>
<tr>
<td>11.3 Adjustment of dosing flow using a frequency converter</td>
<td>15</td>
</tr>
<tr>
<td>12. Operation with electronics</td>
<td>15</td>
</tr>
<tr>
<td>12.1 Electronic diaphragm leakage sensor</td>
<td>15</td>
</tr>
<tr>
<td>13. Maintenance</td>
<td>18</td>
</tr>
<tr>
<td>13.1 General notes</td>
<td>18</td>
</tr>
<tr>
<td>13.2 Changing the gear oil</td>
<td>18</td>
</tr>
<tr>
<td>13.3 Cleaning and maintenance intervals</td>
<td>18</td>
</tr>
<tr>
<td>13.4 Cleaning the suction and discharge valves</td>
<td>18</td>
</tr>
<tr>
<td>13.5 Replacing the diaphragm</td>
<td>19</td>
</tr>
<tr>
<td>14. Fault finding chart</td>
<td>20</td>
</tr>
<tr>
<td>15. Dosing curves</td>
<td>21</td>
</tr>
<tr>
<td>16. Disposal</td>
<td>21</td>
</tr>
</tbody>
</table>

Warning

These complete installation and operating instructions are also available on www.Grundfosalldos.com. Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

1. General information

1.1 Introduction

These installation and operating instructions contain all the information required for starting up and handling the DMX 227 dosing pump.

If you require further information or if any problems arise, which are not described in detail in this manual, please contact the nearest Grundfos Alldos company.

1.2 Service documentation

If you have any questions, please contact the nearest Grundfos Alldos company or service workshop.
2. Installation data

Please fill in the data below after commissioning.
It will help you and your Grundfos Alldos service partner to make subsequent adjustments to the installation.

Owner:

Grundfos Alldos customer number:

Order number:

Product number:

Pump serial number:

Put into service on:

Location of pump:

Used for:

3. Installation sketch

[Blank sketch area]
4. General information

4.1 Applications
The DMX 227 pump is suitable for liquid, non-abrasive and non-inflammable media strictly in accordance with the instructions in this manual.
The DMX 227 dosing pumps have not been approved according to the EC directive 94/9/EC, the so-called ATEX directive. The application of these pumps in potentially explosive environments according to ATEX directive is therefore not permitted.

Warning
Other applications or the operation of pumps in ambient and operating conditions, which are not approved, are considered improper and are not permitted. Grundfos Alldos accepts no liability for any damage resulting from incorrect use.

4.2 Warranty
Warranty in accordance with our general terms of sale and delivery is only valid
• if the pump is used in accordance with the information within this manual.
• if the pump is not dismantled or incorrectly handled.
• if repairs are carried out by authorised and qualified personnel.
• if original spare parts are used for repairs.

5. Safety
This manual contains general instructions that must be observed during installation, operation and maintenance of the pump. This manual must therefore be read by the installation engineer and the relevant qualified personnel/operators prior to installation and start-up, and must be available at the installation location of the pump at all times.
It is not only the general safety instructions given in this "Safety" section that must be observed, but also all the specific safety instructions given in other sections.

5.1 Identification of safety instructions in this manual
If the safety instructions or other advice in this manual are not observed, it may result in personal injury or malfunction and damage to the pump. The safety instructions and other advice are identified by the following symbols:

Warning
If these safety instructions are not observed, it may result in personal injury!

Caution
If these safety instructions are not observed, it may result in malfunction or damage to the equipment!

Note
Notes or instructions that make the job easier and ensure safe operation.

Information provided directly on the pump, e.g. labelling of fluid connections, must be observed and must be maintained in a readable condition at all times.

5.2 Qualification and training of personnel
The personnel responsible for the operation, maintenance, inspection and installation must be appropriately qualified for these tasks. Areas of responsibility, levels of authority and the supervision of the personnel must be precisely defined by the operator.
If the personnel do not have the necessary knowledge, the necessary training and instruction must be given. If necessary, training can be performed by the manufacturer/supplier at the request of the operator of the pump. It is the responsibility of the operator to make sure that the contents of this manual are understood by the personnel.

5.3 Risks when safety instructions are not observed
Non-observance of the safety instructions may have dangerous consequences for the personnel, the environment and the pump. If the safety instructions are not observed, all rights to claims for damages may be lost.
Non-observance of the safety instructions may lead to the following hazards:
• failure of important functions of the pump/system
• failure of specified methods for maintenance
• harm to humans from exposure to electrical, mechanical and chemical influences
• damage to the environment from leakage of harmful substances.

5.4 Safety-conscious working
The safety instructions in this manual, applicable national health and safety regulations and any operator internal working, operating and safety regulations must be observed.

5.5 Safety instructions for the operator/user
Hazardous hot or cold parts on the pump must be protected to prevent accidental contact.
Leakages of dangerous substances (e.g. hot, toxic) must be disposed of in a way that is not harmful to the personnel or the environment. Legal regulations must be observed.
Damage caused by electrical energy must be prevented (for more details, see for example the regulations of the VDE and the local electricity supply company).

5.6 Safety instructions for maintenance, inspection and installation work
The operator must ensure that all maintenance, inspection and installation work is carried out by authorised and qualified personnel, who have been adequately trained by reading this manual.
All work on the pump should only be carried out when the pump is stopped. The procedure described in this manual for stopping the pump must be observed.
Pumps or pump units which are used for media that are harmful to health must be decontaminated.
All safety and protective equipment must be immediately restarted or put into operation once work is complete.
Observe the points described in the initial start-up section prior to subsequent start-up.

Warning
Electrical connections must only be carried out by qualified personnel!
The pump housing must only be opened by personnel authorised by Grundfos Alldos!

5.7 Unauthorised modification and manufacture of spare parts
Modification or changes to the pump are only permitted following agreement with the manufacturer. Original spare parts and accessories authorised by the manufacturer are safe to use. Using other parts can result in liability for any resulting consequences.
5.8 Improper operating methods
The operational safety of the supplied pump is only ensured if it is used in accordance with section 6. Technical data. The specified limit values must under no circumstances be exceeded.

5.9 Safety of the system in the event of a failure in the dosing system
DMX 227 dosing pumps are designed according to the latest technologies and are carefully manufactured and tested. However, a failure may occur in the dosing system. Systems in which dosing pumps are installed must be designed in such a way that the safety of the entire system is still ensured following a failure of the dosing pump. Provide the relevant monitoring and control functions for this.

6. Technical data

6.1 Identification

Fig. 1 DMX 227 nameplate

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type designation</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Maximum capacity [l/h]</td>
</tr>
<tr>
<td>4</td>
<td>Voltage [V]</td>
</tr>
<tr>
<td>5</td>
<td>Frequency [Hz]</td>
</tr>
<tr>
<td>6</td>
<td>Product number</td>
</tr>
<tr>
<td>7</td>
<td>Country of origin</td>
</tr>
<tr>
<td>8</td>
<td>Year and week code</td>
</tr>
<tr>
<td>9</td>
<td>Marks of approval, CE mark, etc.</td>
</tr>
<tr>
<td>10</td>
<td>Maximum pressure [bar]</td>
</tr>
<tr>
<td>11</td>
<td>Serial number</td>
</tr>
</tbody>
</table>
6.2 Type key

Example:
```
DMX 2000 - 3 D PP /E /PP - X - J 2 TT X E0
```

<table>
<thead>
<tr>
<th>Type key</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type range</td>
<td>DMX</td>
</tr>
<tr>
<td>Maximum flow [l/h]</td>
<td>E6 PTC motor for frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Maximum counter-pressure [bar]</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Control variant</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Dosing head variant</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Gasket material</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Valve ball material</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Mains plug</td>
<td>X No plug</td>
</tr>
<tr>
<td>Connection, suction/discharge</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Valve type</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
<tr>
<td>Control panel position</td>
<td>E6 PTC motor with frequency control, 3 x 400 V</td>
</tr>
</tbody>
</table>

Motor variant

- **E0**: PTC motor for frequency control, 3 x 400 V
- **E6**: PTC motor with frequency control, 3 x 400 V

Mains plug

- **X**: No plug

Connection, suction/discharge

- **R**: Flange, DN 65, with connector for PVC pipe, 65/75 mm
- **T**: Flange, DN 65, with connector for PP pipe, 65/75 mm
- **U**: Flange, DN 65, with connector for SS pipe, 65/75 mm
- **Y**: Flange, DN 65
- **Z**: Flange, ANSI, 2 1/2"

Valve type

- Spring-loaded
- 0.1 bar suction opening pressure
- 0.1 bar discharge opening pressure

Supply voltage

- Without motor, flange for single pump: IEC BG90 B14
- Double pump: IEC BG100 B14
- Without motor, NEMA flange 145C (US)
- J 220-240 V / 380-420 V, 50/60 Hz

Control panel position

- **X**: No control panel
6.3 Pump Types

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Single pump</th>
<th>Dosing head size</th>
<th>Motor</th>
<th>Stroke volume [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMX 430-5</td>
<td>DMX 430-5/430-5</td>
<td>1</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMX 860-5</td>
<td>DMX 860-5/860-5</td>
<td>1</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMX 1120-5</td>
<td>DMX 1120-5/1120-5</td>
<td>1</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMX 770-3</td>
<td>DMX 770-3/770-3</td>
<td>2</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMX 1520-3</td>
<td>DMX 1520-3/1520-3</td>
<td>2</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>DMX 2000-3</td>
<td>DMX 2000-3/2000-3</td>
<td>2</td>
<td>1.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

6.4 Pump Performance

6.4.1 Accuracy
- Dosing flow fluctuation: less than ± 2 % within the control range 1:10.

** Applies to:
- water as dosing medium
- fully deaerated dosing head
- measurement according to Grundfos Alldos factory standard no. 0010/0011
- standard pump version.

6.4.2 Performance

** Applies to:
- maximum counter-pressure
- water as dosing medium
- flooded suction 0.5 mWC
- fully deaerated dosing head
- three-phase 400 V motor.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>p max.*</th>
<th>50 Hz</th>
<th>60 Hz</th>
<th>100 Hz**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pump</td>
<td>[bar]</td>
<td>[psi]</td>
<td>[l/h]</td>
<td>[n/min]</td>
</tr>
<tr>
<td>DMX 430-5</td>
<td>5</td>
<td>73</td>
<td>430</td>
<td>28</td>
</tr>
<tr>
<td>DMX 860-5</td>
<td>860</td>
<td>56</td>
<td>1032</td>
<td>273</td>
</tr>
<tr>
<td>DMX 1120-5</td>
<td>1120</td>
<td>73</td>
<td>1344</td>
<td>355</td>
</tr>
<tr>
<td>DMX 770-3</td>
<td>3</td>
<td>44</td>
<td>770</td>
<td>28</td>
</tr>
<tr>
<td>DMX 1520-3</td>
<td>1520</td>
<td>56</td>
<td>1824</td>
<td>482</td>
</tr>
<tr>
<td>DMX 2000-3</td>
<td>2000</td>
<td>73</td>
<td>2400</td>
<td>634</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pump type</th>
<th>p max.*</th>
<th>50 Hz</th>
<th>60 Hz</th>
<th>100 Hz**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double pump</td>
<td>[bar]</td>
<td>[psi]</td>
<td>[l/h]</td>
<td>[n/min]</td>
</tr>
<tr>
<td>DMX 430-5/430-5</td>
<td>5</td>
<td>73</td>
<td>860</td>
<td>63</td>
</tr>
<tr>
<td>DMX 860-5/860-5</td>
<td>1720</td>
<td>120</td>
<td>2064</td>
<td>545</td>
</tr>
<tr>
<td>DMX 1120-5/1120-5</td>
<td>2240</td>
<td>168</td>
<td>2688</td>
<td>710</td>
</tr>
<tr>
<td>DMX 770-3/770-3</td>
<td>3</td>
<td>44</td>
<td>1540</td>
<td>63</td>
</tr>
<tr>
<td>DMX 1520-3/1520-3</td>
<td>3040</td>
<td>120</td>
<td>3648</td>
<td>964</td>
</tr>
</tbody>
</table>

* Maximum counter-pressure

** Operation with frequency converter
6.5 Suction heights

- Data in mWC.
- Applies to:
 - non-degassing and non-abrasive media
 - Newtonian liquids
 - temperature of 20 °C
 - standard pump version.

6.5.1 Media with a viscosity similar to water

Maximum suction height: 3 mWC.

6.5.2 Suction heights for media with maximum permissible viscosity

Flooded suction: 1-3 mWC.

6.6 Ambient and operating conditions

- Permissible ambient temperature: 0 °C to +40 °C.
- Permissible storage temperature: −20 °C to +50 °C.
- Permissible air humidity: max. relative humidity: 95 % (non-condensing).

The installation site must be under cover!
Ensure that the enclosure class of motor and pump are not affected by the atmospheric conditions.

Pumps with electronics are only suitable for indoor use! Do not install outdoors!

Warning
Risk of hot surfaces!
Pumps with AC motors may become hot. Allow a minimum space of 100 mm above the fan cover!

- Sound pressure level: ± 55 dB(A), testing according to DIN 45635-01-KL3.
- Minimum counter-pressure: 1 bar at the pump discharge valve.
 Pay attention to the pressure losses along the way to the injection point inclusively.
- Minimum pressure on the suction side: 1 bar.

6.7 Dosing medium

In the event of questions regarding the material resistance and suitability of the pump for specific dosing media, please contact Grundfos Alldos.

The dosing medium must have the following basic characteristics:
- liquid
- non-abrasive
- non-inflammable.

6.7.1 Permissible media temperature

<table>
<thead>
<tr>
<th>Dosing head material</th>
<th>Temperature range p ≤ 10 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>0 °C to +40 °C</td>
</tr>
<tr>
<td>Stainless steel, DIN 1.4571*</td>
<td>−10 °C to +70 °C</td>
</tr>
<tr>
<td>PP</td>
<td>0 °C to +40 °C</td>
</tr>
</tbody>
</table>

* For SIP/CIP applications: A temperature of 145 °C at a counter-pressure of max. 2 bar is permitted for a short period (15 minutes).

6.7.2 Maximum permissible viscosity

Applies to:
- non-degassing and non-abrasive media
- Newtonian liquids
- temperature of 20 °C
- standard pump version.

<table>
<thead>
<tr>
<th>Single pump</th>
<th>Double pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity [mPa s]</td>
<td></td>
</tr>
<tr>
<td>50 Hz</td>
<td>60 Hz</td>
</tr>
<tr>
<td>DMX 430-5</td>
<td>DMX 430-5/430-5</td>
</tr>
<tr>
<td>DMX 860-5</td>
<td>DMX 860-5/860-5</td>
</tr>
<tr>
<td>DMX 1120-5</td>
<td>DMX 1120-5/1120-5</td>
</tr>
<tr>
<td>DMX 770-3</td>
<td>DMX 770-3/770-3</td>
</tr>
<tr>
<td>DMX 1520-3</td>
<td>DMX 1520-3/1520-3</td>
</tr>
<tr>
<td>DMX 2000-3</td>
<td>DMX 2000-3/2000-3</td>
</tr>
</tbody>
</table>

6.8 Electrical data

6.8.1 Enclosure class

The enclosure class depends on the motor variant selected, see motor nameplate.
The specified enclosure class can only be ensured if the power supply cable is connected with the same degree of protection.

6.8.2 Motor

Version: see motor and pump nameplates.

6.9 Materials

Pump
- Pump housing: Al 226
- Diaphragm flanges: GG 25.

Optoelectronic diaphragm sensor
- Housing: ABS.

6.10 Weights

<table>
<thead>
<tr>
<th>Single pumps</th>
<th>Approx. weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMX 430-5 - DMX 2000-3</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double pumps</th>
<th>Approx. weight [kg]</th>
</tr>
</thead>
</table>
6.11 Dimensional sketches

Fig. 2 Dimensional sketches of DMX 227

<table>
<thead>
<tr>
<th>Single pump</th>
<th>Double pump</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMX 430-5</td>
<td>DMX 430-5/430-5</td>
<td>573</td>
<td>191</td>
<td>446</td>
<td>228</td>
<td>270</td>
<td>95</td>
<td>880</td>
</tr>
<tr>
<td>DMX 860-5</td>
<td>DMX 860-5/860-5</td>
<td>573</td>
<td>191</td>
<td>446</td>
<td>228</td>
<td>270</td>
<td>95</td>
<td>880</td>
</tr>
<tr>
<td>DMX 1120-5</td>
<td>DMX 1120-5/1120-5</td>
<td>573</td>
<td>191</td>
<td>446</td>
<td>228</td>
<td>270</td>
<td>95</td>
<td>880</td>
</tr>
<tr>
<td>DMX 770-3</td>
<td>DMX 770-3/770-3</td>
<td>580</td>
<td>201</td>
<td>468</td>
<td>250</td>
<td>270</td>
<td>106</td>
<td>910</td>
</tr>
<tr>
<td>DMX 1520-3</td>
<td>DMX 1520-3/1520-3</td>
<td>580</td>
<td>201</td>
<td>468</td>
<td>250</td>
<td>270</td>
<td>106</td>
<td>910</td>
</tr>
</tbody>
</table>

* Dimension with double pump

Measurements in mm.
7. Transport and storage

Do not throw or drop the pump.
Store the pump in a dry and cool place.
Store the pump in upright position so that the gear oil cannot leak out.
Do not use the protective packaging as transport packaging.
Observe the permissible storage temperature!

7.1 Delivery

The DMX 227 dosing pumps are supplied in different packaging, depending on pump type and the overall delivery. For transport and intermediate storage, use the correct packaging to protect the pump against damage.

7.2 Intermediate storage

- Permissible storage temperature: –20 °C to +50 °C.
- Permissible air humidity: max. relative humidity: 92 % (non-condensing).

7.3 Unpacking

Retain the packaging for future storage or return, or dispose of the packaging in accordance with local regulations.

7.4 Return

Return the pump in its original packaging or equivalent. The pump must be thoroughly cleaned before it is returned or stored. It is essential that there are no traces of toxic or hazardous media remaining on the pump.

Grundfos Alldos accepts no liability for damage caused by incorrect transportation or missing or unsuitable packaging of the pump!

Before returning the pump to Grundfos Alldos for service, the safety declaration at the end of these instructions must be filled in by authorised personnel and attached to the pump in a visible position.

If a pump has been used for a medium which is injurious to health or toxic, the pump will be classified as contaminated.

If Grundfos Alldos is requested to service the pump, it must be ensured that the pump is free from substances that can be injurious to health or toxic. If the pump has been used for such substances, the pump must be cleaned before it is returned.

If proper cleaning is not possible, all relevant information about the chemical must be provided.

If the above is not fulfilled, Grundfos Alldos can refuse to accept the pump for service. Possible costs of returning the pump are paid by the customer.

The safety declaration can be found at the end of these instructions.

The replacement of the supply cable must be carried out by an authorised Grundfos Alldos service workshop.
8. Installation

8.1 Optimum installation

Fig. 3 Example of optimum installation

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1i</td>
<td>Dosing tank</td>
</tr>
<tr>
<td>2i</td>
<td>Electric agitator</td>
</tr>
<tr>
<td>3i</td>
<td>Extraction device</td>
</tr>
<tr>
<td>4i</td>
<td>Suction pulsation damper</td>
</tr>
<tr>
<td>5i</td>
<td>Dosing pump</td>
</tr>
<tr>
<td>6i</td>
<td>Relief valve</td>
</tr>
<tr>
<td>7i</td>
<td>Pressure-loading valve</td>
</tr>
<tr>
<td>8i</td>
<td>Pulsation damper</td>
</tr>
<tr>
<td>9i</td>
<td>Measuring glass</td>
</tr>
<tr>
<td>10i</td>
<td>Injection unit</td>
</tr>
</tbody>
</table>

8.2 Installation tips

- For easy deaeration of the dosing head, install a ball valve (11i) with bypass line (back to the dosing tank) immediately after the discharge valve.
- In the case of long discharge lines, install a non-return valve (12i) in the discharge line.

Fig. 4 Installation with ball valve and non-return valve

- When installing the suction line, observe the following:
 - Keep the suction line as short as possible. Prevent it from becoming tangled.
 - If necessary, use swept bends instead of elbows.
 - Always route the suction line up towards the suction valve.
 - Avoid loops which may cause air bubbles.

- For non-degassing media with a viscosity similar to water, the pump can be mounted on the tank (observe the maximum suction height).
- Flooded suction preferred.
- For media with a tendency to sedimentation, install the suction line with filter (13i) so that the suction valve remains a few millimetres above the possible level of sedimentation.

Fig. 6 Tank installation

- Note for suction-side installation: In dosing systems with a suction line longer than 1 metre, depending on the dosing flow, it may be necessary to install a properly sized pulsation damper (4i) immediately before the pump suction valve.

Fig. 7 Installation with suction-side pulsation damper
• Note for discharge-side installation: To protect the piping, use a pulsation damper (8i) for rigid piping longer than 3 metres and tubing longer than 5 metres.

Fig. 8 Installation with discharge-side pulsation damper

• For degassing and viscous media: flooded suction.
• To protect the dosing pump and the discharge line against excessive pressure build-up, install a relief valve (6i) in the discharge line.

Fig. 9 Installation with relief valve

With open outflow of the dosing medium or a counter-pressure below 1 bar
• Install a pressure-loading valve (7i) immediately before the outlet or the injection unit.

A positive pressure difference of at least 1 bar must be ensured between the counter-pressure at the injection point and the pressure of the dosing medium at the pump suction valve.
• If this cannot be ensured, install a pressure-loading valve (7i) in the discharge line.

Fig. 10 Installation with pressure-loading valve

• To avoid the siphon effect, install a pressure-loading valve (7i) in the discharge line and, if necessary, a solenoid valve (14i) in the suction line.

Fig. 11 Installation to avoid the siphon effect

Warning
Risk of hot surfaces!
Pumps with AC motors may become hot.
Allow a minimum space of 100 mm to the fan cover!

8.3 Mounting
• Mount the pump horizontally on the tank or on a console using four M8 screws.

8.4 Tube / pipe lines
8.4.1 General

Warning
To protect the dosing pump against excessive pressure build-up, install a relief valve in the discharge line.
Only use the prescribed line types!
All lines must be free from strain!
Avoid loops and buckles in the tubes!
Keep the suction line as short as possible to avoid cavitation!
If necessary, use swept bends instead of elbows.
Observe the chemical manufacturer’s safety instructions when handling chemicals!
Make sure that the pump is suitable for the actual dosing medium!
The flow must run in the opposite direction to gravity!

Caution
The resistance of the parts that come into contact with the media depends on the media, media temperature and operating pressure. Ensure that parts in contact with the media are chemically resistant to the dosing medium under operating conditions!

8.5 Connecting the suction and discharge lines

Warning
All lines must be free from strain!
Only use the prescribed line types!

Depending on the material of the connection flanges (counter flanges):
• Pipe and flange made of stainless steel, DIN 1.4571: Weld the pipe to the blanking flange.
• Pipe and flange made of PP: Weld the pipe to the flange sleeve.
• Pipe and flange made of PVC: Adhere the pipe to the flange sleeve.
• The internal diameter of the lines, adapters and connectors should not be smaller than DN 65. If necessary, use bends instead of elbows.
• The suction lines must be designed in such a way that cavitation is avoided.

Caution
Pulsation dampers should be fitted on both the suction and discharge sides.

A positive pressure difference of 10 mWC is required for correct operation of the dosing pump. If the total of the counter-pressure and the static difference in height between the suction valve and the dosing point is less than 10 mWC, a pressure-loading valve must be installed directly upstream of the dosing point.

Note
• Connect the suction line to the suction valve (A).
 – Install the suction line in the tank so that the foot valve remains 5 to 10 mm above the bottom of the tank or the possible level of sedimentation.
• Connect the discharge line to the discharge valve (B).
9. Electrical connections

Make sure that the pump is suitable for the electricity supply on which it will be used.

Warning

Electrical connections must only be carried out by qualified personnel!

Disconnect the power supply before connecting the power supply cable and the relay contacts!

Observe the local safety regulations!

Warning

The pump housing must only be opened by personnel authorised by Grundfos Alldos!

Warning

Protect the cable connections and plugs against corrosion and humidity.

Only remove the protective caps from the sockets that are being used.

Caution

The power supply must be electrically isolated from the signal inputs and outputs.

Note

The pump is switched off by switching off the power supply.

Do not switch on the power supply until the pump is going to be started.

9.1 Connecting the motor

- Connect the motor according to the wiring diagram in the terminal box.

Observe the direction of rotation!

A motor protector, adjusted to the rated motor current, must be provided by the customer.

Caution

When the pump is used with a frequency converter, the jumpers in the terminal box have to be set according to the converter voltage.

The jumpers of three-phase motors are factory-set for star connection.

10. Commissioning

10.1 Checks before start-up

- Check that the rated voltage stated on the pump nameplate corresponds to the local conditions!
- Check that all connections are secure and tighten, if necessary.
- Check that the dosing head screws are tightened with the specified torque and tighten, if necessary.
- Check that all electrical connections are correct.

10.2 Start-up

Note

After initial start-up and after each time the diaphragm is changed, tighten the dosing head screws.

Caution

After approximately 6-10 operating hours or two days, cross-tighten the dosing head screws using a torque wrench.

Maximum torque: 70-80 Nm.

10.2.1 Filling with gear oil

The pump has been tested in the factory, and the oil has been drained prior to shipping. Before starting, fill the pump with the supplied special oil as follows:

1. Make sure that the pump is switched off.
2. Slacken and remove the oil-filling screw with oil dipstick.
3. Slowly add the gear oil through the oil-filling opening until the oil reaches the mark on the oil dipstick.

- Gear oil for single pumps: 5.0 litres.
- Gear oil for double pumps: 7.5 litres.
4. Switch on the pump.
5. Switch off the pump after approx. 10 minutes, check the oil level, and add oil, if necessary.
6. Refit the oil-filling screw with dipstick.

10.2.2 Starting the pump

1. Switch on the power supply.
2. Pumps with frequency converter: Set the dosing rate to 100 %. See installation and operating instructions for the frequency converter and section 11.3 Adjustment of dosing flow using a frequency converter.

The pump is now ready for operation.
11. Operation

11.1 Description of the pump

11.2 Switching on/off

11.3 Adjustment of dosing flow using a frequency converter

Warning

Observe the manufacturer’s instructions!
The connections must be carried out according to these instructions.

Settings of frequency converter when used with Grundfos Aldos dosing pumps

Pay special attention to the following parameters of the frequency converter:

- **P013** (maximum motor frequency):
 - Set the frequency converter to maximum 100 Hz.
 - Due to this setting, the maximum stroke frequency of the pump cannot be exceeded.
- **P086** (motor current limit):
 - Do not change the default setting (150%).
 - The motor is protected by a PTC resistor. Therefore, this parameter is not necessary.
- **P081 - P085** (motor data):
 - Set these parameters to the values stated on the motor nameplate.
 - Observe the manufacturer’s instructions!

12. Operation with electronics

12.1 Electronic diaphragm leakage sensor

12.1.1 Technical data

12.1.2 Dimensional sketch (electronics enclosure)

Pos. Components

1 Motor
2 Frequency converter
3 Worm wheel
4 Eccentric
5 Tappet
6 Support disk
7 Dosing diaphragm
8 Dosing head
9 Suction valve
10 Pressure valve

Functional principle

- Oscillating positive displacement pump with electric drive, mechanical diaphragm deflection, and constant stroke length.
- Following reduction of the motor speed by a worm gear, the rotation of the drive is converted into the suction and compression movement of the diaphragm by means of an eccentric and tappet. A defined volume (stroke volume) of the dosed medium is thus sucked into the dosing head via the suction valve, and displaced into the dosing line by the discharge valve.
- The dosing flow can be adjusted in the range 1:10 if a frequency converter is installed.

Caution

Before switching on the pump, check that it is installed correctly. Refer to sections 8. Installation and 10. Commissioning.

- To start the pump, switch on the power supply.
- To stop the pump, switch off the power supply.
12.1.3 Function
Pumps prepared for diaphragm leakage detection:
- Special dosing head flange for inserting the optoelectronic sensor
- The optoelectronic sensor contains
 - infrared sender
 - infrared receiver.

In case of a leaking diaphragm
- The dosing liquid penetrates the dosing head flange.
 - The light refraction will be changed.
- The sensor produces a signal.
 - The electronics switches two contacts. These contacts can for instance be used to trigger an alarm device or to switch off the pump.

Fig. 15 Diaphragm leakage sensor

12.1.4 Electrical connection of the electronics

Warning
Electrical connections must only be carried out by qualified personnel!

Disconnect the power supply before connecting the power supply cable and the relay contacts!

Observe the local safety regulations!
Protect the cable connections and plugs from corrosion and moisture.

Before connecting the power supply cable, check that the supply voltage stated on the pump nameplate corresponds to the local electricity supply. An incorrect power supply could destroy the unit!

To ensure electromagnetic compatibility (EMC), the input cables and current output cables must be screened.
1. Connect the screen at one end to PE.
 - Refer to the connection diagram!
2. Route input cables, current output cables and power supply cables in separate ducts.
3. Connect the device to the power supply according to the connection diagram.
4. Connect the electronics with the sensor according to the connection diagram.

Warning
The potential-loaded contact 1, terminals 6 and 7, is loaded with supply voltage.

Switch off the power supply before connecting contact 1!

Caution
The contacts have no protective circuits. Only pure ohmic loads may be switched. For switching the pump motor, a contactor has to be connected inbetween.

5. Connect contacts 1 and 2 according to individual needs.

12.1.5 Relay outputs

Note
The relay output connection depends on the application and the connected actuators.
- Interference suppression is required for inductive loads (also relays and contactors).
- If this is not possible, protect the relay contacts using a suppressor circuit as described below.

With AC voltage

<table>
<thead>
<tr>
<th>Current up to</th>
<th>Capacitor C</th>
<th>Resistor R</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mA</td>
<td>10 μF, 275 V</td>
<td>390 Ω 2 W</td>
</tr>
<tr>
<td>70 mA</td>
<td>47 μF, 275 V</td>
<td>22 Ω 2 W</td>
</tr>
<tr>
<td>150 mA</td>
<td>100 μF, 275 V</td>
<td>47 Ω 2 W</td>
</tr>
<tr>
<td>1.0 A</td>
<td>220 μF, 275 V</td>
<td>47 Ω 2 W</td>
</tr>
</tbody>
</table>

With DC voltage
- Connect the free-wheeling diode parallel to the relay or contactor.

Caution
Provide relay outputs on site with an appropriate back-up fuse!

Note
These connections depend on the type of actuator used and should only be understood as guidelines. Refer to actuator documentation.
12.1.6 Screwing the sensor into the dosing head
- Screw the sensor from the lower side into the hole of the dosing head flange (M14 x 1.5).
 - Now the diaphragm leakage sensor is ready for start-up.

12.1.7 Start-up
- Dip the sensor into water.
 - Green and red LEDs are on:
 - Sensor and electronics are ready for operation!
 - One or more LEDs are off:
 - Sensor or electronics is defective!
 - Call Grundfos Alldos service.
- Carefully dry the sensor.
 - Only the green LED is still on:
 - Sensor and electronics are ready for operation!
 - The red LED is still on:
 - Sensor or electronics is defective!
 - Call Grundfos Alldos service.

12.1.8 Using the contacts
- Terminals 6 and 7 (potential-loaded)
 - for instance for switching off the pump in case of a diaphragm leakage.
- Terminals 8, 9 and 10 (potential-free)
 - for instance for triggering an alarm device.

12.1.9 Description of the device
There are a green and a red light-emitting diode (LED) at the electronics.
- Green LED
 - shows that the system is ready for operation.
 - The LED is only on when the sensor is connected to the electronics.
 - If the LED is off in this case, either the sensor or the cable is defective or wrongly connected.
- Red LED
 - shows that a diaphragm leakage has been detected.
 - The green LED is still on.

12.1.10 Maintenance

Sensor
- Optoelectronic sensor with 3 metres cable.
- Clean the sensor in case of malfunction.
- If the sensor still does not operate correctly, replace it.

Electronics
- No maintenance is possible by the user.
- If the electronics does not operate correctly, call Grundfos Alldos service.

Caution
Carry out a functional check before start-up!

Warning
Do not open the electronics or sensor!
Repairs must only be carried out by authorised and qualified personnel!
13. Maintenance

13.1 General notes

Warning
When dosing dangerous media, observe the corresponding safety precautions!
Risk of chemical burns!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!
Do not allow any chemicals to leak from the pump. Collect and dispose of all chemicals correctly!

Warning
The pump housing must only be opened by personnel authorised by Grundfos Alldos!
Repairs must only be carried out by authorised and qualified personnel!
Switch off the pump and disconnect it from the power supply before carrying out maintenance work and repairs!

13.2 Changing the gear oil

Warning
The gear oil must only be changed by authorised and qualified personnel.
For this purpose, send the pump to Grundfos Alldos or an authorised service workshop.

Caution
Use exclusively original gear oil.
When changing the gear oil, check the dosing diaphragm and, for safety reasons, replace, if necessary.

Caution
When changing the gear oil, check the dosing diaphragm and, for safety reasons, replace, if necessary.

13.3 Cleaning and maintenance intervals

Clean the diaphragm and valves, and replace, if necessary (with stainless-steel valves: inner valve parts):
• At least every 12 months or after 3,000 operating hours.
• In the event of a fault.

13.4 Cleaning the suction and discharge valves

Caution
If possible, rinse the dosing head, e.g. by supplying it with water.

If the pump loses capacity, clean the suction and discharge valves as follows:
See fig. 19.
1. Loosen the cap nuts (8) on the flange (1).
2. Remove the valve housing (2/9) and other parts of the valve.
3. Remove the other internal parts, and clean or replace, if necessary.
4. Re-assemble the valve according to the exploded view below.
5. Refit the valve.

![Exploded view of the valves](fig. 19)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flange</td>
</tr>
<tr>
<td>2</td>
<td>Valve housing</td>
</tr>
<tr>
<td>3</td>
<td>Valve seat</td>
</tr>
<tr>
<td>4</td>
<td>Valve disk</td>
</tr>
<tr>
<td>6</td>
<td>Double-end stud</td>
</tr>
<tr>
<td>7</td>
<td>Washer</td>
</tr>
<tr>
<td>8</td>
<td>Cap nut</td>
</tr>
<tr>
<td>9</td>
<td>Valve housing</td>
</tr>
<tr>
<td>10</td>
<td>Supporting ring</td>
</tr>
<tr>
<td>11</td>
<td>O-ring</td>
</tr>
<tr>
<td>12</td>
<td>O-ring</td>
</tr>
<tr>
<td>13</td>
<td>O-ring</td>
</tr>
<tr>
<td>14</td>
<td>Spring</td>
</tr>
<tr>
<td>15</td>
<td>Valve disk</td>
</tr>
</tbody>
</table>

Caution
The O-rings must be correctly placed in the specified groove.
13.5 Replacing the diaphragm

Note If possible, rinse the dosing head, e.g. by supplying it with water.

13.5.1 Switching off the pump
1. Switch off the pump and disconnect it from the power supply.
2. Depressurise the system.
3. Take suitable steps to ensure that the returning dosing medium is safely collected.

13.5.2 Replacing the diaphragm
1. Loosen the six dosing head screws.
2. Remove the dosing head.
3. Unscrew the diaphragm by manually turning it counterclockwise.
4. Refit the retaining ring (4), shim ring (5), lip seal (7) and supporting ring (6). Replace faulty parts.
5. Screw in the new diaphragm completely.
6. Remove the motor fan cover, and turn the fan blades until the diaphragm reaches the bottom dead centre.
7. Refit the dosing head carefully, and cross-tighten the screws. Maximum torque: 70-80 Nm.
8. Deaerate and start the dosing pump.

Fig. 20 Replacing the diaphragm

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>2</td>
<td>Dosing head screws</td>
</tr>
<tr>
<td>3</td>
<td>Dosing head</td>
</tr>
<tr>
<td>4</td>
<td>Retaining ring</td>
</tr>
<tr>
<td>5</td>
<td>Shim ring</td>
</tr>
<tr>
<td>6</td>
<td>Supporting ring</td>
</tr>
<tr>
<td>7</td>
<td>Lip seal</td>
</tr>
</tbody>
</table>

After initial start-up and after each time the diaphragm is changed, tighten the dosing head screws.

Caution After approximately 6-10 operating hours or two days, cross-tighten the dosing head screws using a torque wrench. Maximum torque: 70-80 Nm.
14. Fault finding chart

<table>
<thead>
<tr>
<th>Fault Description</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dosing pump does not run.</td>
<td>a) Not connected to the power supply.</td>
<td>Connect the power supply cable.</td>
</tr>
<tr>
<td></td>
<td>b) Incorrect supply voltage.</td>
<td>Replace the dosing pump.</td>
</tr>
<tr>
<td></td>
<td>c) Electrical failure.</td>
<td>Return the pump for repair.</td>
</tr>
<tr>
<td></td>
<td>d) The diaphragm leakage detection has responded.</td>
<td>Replace the diaphragm.</td>
</tr>
<tr>
<td>2. Dosing pump does not suck in.</td>
<td>a) Leaking suction line.</td>
<td>Replace or seal the suction line.</td>
</tr>
<tr>
<td></td>
<td>b) Cross-section of the suction line too small or suction line too long.</td>
<td>Check with Grundfos Alldos specification.</td>
</tr>
<tr>
<td></td>
<td>c) Clogged suction line.</td>
<td>Rinse or replace the suction line.</td>
</tr>
<tr>
<td></td>
<td>d) Foot valve covered by sediment.</td>
<td>Suspend the suction line from a higher position.</td>
</tr>
<tr>
<td></td>
<td>e) Crystalline deposits in the valves.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>f) Diaphragm broken or diaphragm tappet torn out.</td>
<td>Replace the diaphragm.</td>
</tr>
<tr>
<td></td>
<td>g) Dosing tank is empty.</td>
<td>Change the tank.</td>
</tr>
<tr>
<td>3. Dosing pump does not dose.</td>
<td>a) Air in the suction line and dosing head.</td>
<td>Wait until the pump has deaerated.</td>
</tr>
<tr>
<td></td>
<td>b) Viscosity or density of medium too high.</td>
<td>Check the installation.</td>
</tr>
<tr>
<td></td>
<td>c) Crystalline deposits in the valves.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>d) Valves not correctly assembled.</td>
<td>Assemble the inner valve parts in the right order and check and possibly correct the flow direction.</td>
</tr>
<tr>
<td></td>
<td>e) Injection point blocked.</td>
<td>Check and possibly correct the flow direction (injection unit), or remove the obstruction.</td>
</tr>
<tr>
<td></td>
<td>f) Incorrect installation of lines and peripheral equipment.</td>
<td>Check the lines for free passage and correct installation.</td>
</tr>
<tr>
<td>4. Dosing flow of the pump is inaccurate.</td>
<td>a) Dosing head not fully deaerated.</td>
<td>Repeat the deaeration.</td>
</tr>
<tr>
<td></td>
<td>b) Degassing medium.</td>
<td>Check the installation.</td>
</tr>
<tr>
<td></td>
<td>c) Parts of the valves covered in dirt or incrusted.</td>
<td>Clean the valves.</td>
</tr>
<tr>
<td></td>
<td>d) Counter-pressure fluctuations.</td>
<td>Install a pressure-loading valve and a pulsation damper.</td>
</tr>
<tr>
<td></td>
<td>e) Suction height fluctuations.</td>
<td>Keep the suction level constant.</td>
</tr>
<tr>
<td></td>
<td>f) Siphon effect (inlet pressure higher than counter-pressure).</td>
<td>Install a pressure-loading valve.</td>
</tr>
<tr>
<td></td>
<td>g) Leaking or porous suction line or discharge line.</td>
<td>Replace the suction line or discharge line.</td>
</tr>
<tr>
<td></td>
<td>h) Parts in contact with the medium are not resistant to it.</td>
<td>Replace with resistant materials.</td>
</tr>
<tr>
<td></td>
<td>i) Dosing diaphragm worn (incipient tears).</td>
<td>Replace the diaphragm. Also observe the maintenance instructions.</td>
</tr>
<tr>
<td></td>
<td>j) Variation of the dosing medium (density, viscosity).</td>
<td>Check the concentration. Use an agitator, if necessary.</td>
</tr>
</tbody>
</table>
15. Dosing curves

The dosing curves on the following pages are trend curves. They apply to:
- performance of single pump (the flow rate is doubled for the double pump)
- water as the dosing medium
- zero point of pump Q_0 at a counter-pressure of 3 bar
- standard pump version.

Abbreviation Description

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Dosing flow</td>
</tr>
<tr>
<td>f</td>
<td>Drive frequency</td>
</tr>
</tbody>
</table>

Fig. 21 DMX 430-5

Fig. 22 DMX 860-5

Fig. 23 DMX 1120-5

Fig. 24 DMX 770-3

Fig. 25 DMX 1520-3

Fig. 26 DMX 2000-3

16. Disposal

This product or parts of it must be disposed of in an environmentally sound way:

1. Use appropriate waste collection services.
2. If this is not possible, contact the nearest Grundfos or Grundfos Alldos company or service workshop.

Subject to alterations.
Safety declaration

Please copy, fill in and sign this sheet and attach it to the pump returned for service.

We hereby declare that this product is free from hazardous chemicals, biological and radioactive substances:

Product type: ___________________________________

Model number: _________________________________

No media or water: ______________________________

A chemical solution, name: _______________________

(see pump nameplate)

Fault description

Please make a circle around the damaged part.
In the case of an electrical or functional fault, please mark the cabinet.

Please give a short description of the fault:

_____________________________ _____________________

Date and signature Company stamp
United Kingdom
Grundfos Alldos
Dosing & Disinfection
ALLDOS Ltd.
36 Gravelly Industrial Park, Tyburn Road
Birmingham B24 8TG
Phone: +44-121-3283336
Telefax: +44-121-3284332
E-mail: alldos.uk@alldos.com

United Kingdom
GRUNDFOS Pumps Ltd.
Grovebury Road
Leighton Buzzard/Beds. LU7 8TL
Phone: +44-1525-850000
Telefax: +44-1525-850011

U.S.A.
GRUNDFOS Pumps Corporation
17100 West 118th Terrace
Olathe, Kansas 66061
Phone: +1-913-227-3400
Telefax: +1-913-227-3500

Usbekistan
Представительство ГРУНДФОС в
Ташкенте
700000 Ташкент ул.Усмана Нусура 1-й
тупик 5
Телефон: (3712) 55-68-15
Факс: (3712) 53-36-35
Being responsible is our foundation
Thinking ahead makes it possible
Innovation is the essence