DME, Variant AR
16 to 248 gph (60-940 l/h)
Installation and operating instructions
DME, Variant AR

Table of contents

<table>
<thead>
<tr>
<th>Language</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (US)</td>
<td>Installation and operating instructions</td>
<td>3</td>
</tr>
<tr>
<td>Español (MX)</td>
<td>Instrucciones de instalación y operación</td>
<td>36</td>
</tr>
<tr>
<td>Français (CA)</td>
<td>Notice d'installation et de fonctionnement</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Appendix 1</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Appendix 2</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Appendix 3</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Appendix 4</td>
<td>105</td>
</tr>
</tbody>
</table>
English (US) Installation and operating instructions

CONTENTS

1. LIMITED WARRANTY 4
2. Safety instructions 4
 2.1 Symbols used in this document 4
 2.2 Qualification and training of personnel 4
 2.3 Safety instructions for the operator/user 5
 2.4 Safety of the system in the event of a failure in the dosing pump 5
 2.5 Dosing chemicals 5
 2.6 Diaphragm breakage 6
 2.7 Operation with loose dosing head screws 6
3. General description 7
 3.1 Applications 7
 3.2 Improper operating method 7
 3.3 Type key 8
4. Technical data 9
 4.1 Mechanical data 9
 4.2 Electrical data 9
 4.3 Input/output data 9
 4.4 Dimensions 10
5. Installation 10
 5.1 Safety instructions 10
 5.2 Installation environment 10
 5.3 Installation of pump 10
 5.4 Installation example 11
 5.5 Electrical connection 11
 5.6 Connection overview 12
6. Functions 14
 6.1 Control panel 14
 6.2 Start/stop of pump 15
 6.3 Priming/venting of pump 15
 6.4 Level control 15
 6.5 Diaphragm leakage sensor 15
 6.6 Alarm output and indicator lights 16
 6.7 Fieldbus communication 17
 6.8 Menu 18
 6.9 Operating modes 19
 6.1 Manual 19
 6.11 Pulse 19
 6.1 Analog 20
 6.1 Timer 20
 6.1 Batch 21
 6.1 Anti-cavitation 22
 6.1 Capacity limitation 22
 6.1 Counters 23
 6.1 Resetting 24
 6.2 Language 24
 6.2 Input setup 25
 6.2 Empty tank (alarm) 26
 6.2 Measuring units 26
 6.2 Dosing monitoring 27
 6.2 Control panel lock 28
7. Start-up 29
8. Calibration 30
 8.1 Direct calibration 31
 8.2 Check calibration 32
9. Service 32
 9.1 Regular maintenance 32
 9.2 Cleaning 32
 9.3 Perform service 33
 9.3.1 Dosing head overview 33
 9.3.2 Dismantling the diaphragm and valves 33
 9.3.3 Reassembling the diaphragm and valves 34
 9.4 Diaphragm breakage 34
 9.4.1 Dosing liquid in the pump housing 35
 9.5 Operation with loose dosing head screws 35
 9.6 Repairs 35
10. Fault finding chart 36
11. Disposal 36

Warning
Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.
1. LIMITED WARRANTY

Products manufactured by GRUNDFOS PUMPS CORPORATION (Grundfos) are warranted to the original user only to be free of defects in material and workmanship for a period of 24 months from date of installation, but not more than 30 months from date of manufacture. Grundfos' liability under this warranty shall be limited to repairing or replacing at Grundfos' option, without charge, F.O.B. Grundfos' factory or authorized service station, any product of Grundfos' manufacture. Grundfos will not be liable for any costs of removal, installation, transportation, or any other charges which may arise in connection with a warranty claim. Products which are sold but not manufactured by Grundfos are subject to the warranty provided by the manufacturer of said products and not by Grundfos' warranty. Grundfos will not be liable for damage or wear to products caused by abnormal operating conditions, accident, abuse, misuse, unauthorized alteration or repair, or if the product was not installed in accordance with Grundfos' printed installation and operating instructions.

To obtain service under this warranty, the defective product must be returned to the distributor or dealer of Grundfos' products from which it was purchased together with proof of purchase and installation date, failure date, and supporting installation data. Unless otherwise provided, the distributor or dealer will contact Grundfos or an authorized service station for instructions. Any defective product to be returned to Grundfos or a service station must be sent freight prepaid; documentation supporting the warranty claim and/or a Return Material Authorization must be included if so instructed.

GRUNDFOS WILL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSSES, OR EXPENSES ARISING FROM INSTALLATION, USE, OR ANY OTHER CAUSES. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND BEYOND THOSE WARRANTIES DESCRIBED OR REFERRED TO ABOVE.

Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages and some jurisdictions do not allow limit actions on how long implied warranties may last. Therefore, the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from jurisdiction to jurisdiction.

2. Safety instructions

These installation and operating instructions contain general instructions that must be observed during installation, operation and maintenance of the pump. It must therefore be read by the installation engineer and the relevant qualified operator prior to installation and start-up, and must be available at the installation location at all times.

2.1 Symbols used in this document

- **Warning**
 - If these safety instructions are not observed, it may result in personal injury.

- **Caution**
 - If these safety instructions are not observed, it may result in malfunction or damage to the equipment.

- **Note**
 - Notes or instructions that make the job easier and ensure safe operation.

2.2 Qualification and training of personnel

The personnel responsible for the installation, operation and service must be appropriately qualified for these tasks. Areas of responsibility, levels of authority and the supervision of the personnel must be precisely defined by the operator. If necessary, the personnel must be trained appropriately.

Risks of not observing the safety instructions

Non-observance of the safety instructions may have dangerous consequences for the personnel, the environment and the pump and may result in the loss of any claims for damages.

It may lead to the following hazards:

- Personal injury from exposure to electrical, mechanical and chemical influences.
- Damage to the environment and personal injury from leakage of harmful substances.
2.3 Safety instructions for the operator/user
The safety instructions described in these instructions, existing national regulations on health protection, environmental protection and for accident prevention and any internal working, operating and safety regulations of the operator must be observed. Information attached to the pump must be observed. Leakages of dangerous substances must be disposed of in a way that is not harmful to the personnel or the environment. Damage caused by electrical energy must be prevented, see the regulations of the local electricity supply company.

Before starting work on the pump, the pump must be disconnected from the mains. The system must be pressureless!

Note The mains plug is the separator separating the pump from the mains.

Only original accessories and original spare parts should be used. Using other parts can result in exemption from liability for any resulting consequences.

2.4 Safety of the system in the event of a failure in the dosing pump
The dosing pump was designed according to the latest technologies and is carefully manufactured and tested. If it fails regardless of this, the safety of the overall system must be ensured. Use the relevant monitoring and control functions for this.

Make sure that any chemicals that are released from the pump or any damaged lines do not cause damage to system parts and buildings.
The installation of leak monitoring solutions and drip trays is recommended.

2.5 Dosing chemicals

Warning
Before switching the supply voltage back on, the dosing lines must be connected in such a way that any chemicals in the dosing head cannot spray out and put people at risk. The dosing medium is pressurized and can be harmful to health and the environment.

Warning
When working with chemicals, the accident prevention regulations applicable at the installation site should be applied (e.g. wearing protective clothing). Observe the chemical manufacturer’s safety data sheets and safety instructions when handling chemicals!

Warning
The pump must be equipped with a diaphragm leakage detection when used for crystallizing media.

A deaeration hose, which is routed into a container, e.g. a drip tray, must be connected to the deaeration valve.

The dosing medium must be in liquid aggregate state!

Caution
Observe the freezing and boiling points of the dosing medium!

The resistance of the parts that come into contact with the dosing medium, such as the dosing head, valve ball, gaskets and lines, depends on the medium, media temperature and operating pressure. Ensure that parts in contact with the dosing medium are resistant to the dosing medium under operating conditions, see data booklet!

Caution
Should you have any questions regarding the material resistance and suitability of the pump for specific dosing media, please contact Grundfos.
2.6 Diaphragm breakage
If the diaphragm leaks or is broken, dosing liquid escapes from the drain opening (fig. 1) on the dosing head. Observe section 9.4 Diaphragm breakage.

Warning
Danger of explosion, if dosing liquid has entered the pump housing!
Operation with damaged diaphragm can lead to dosing liquid entering the pump housing.
In case of diaphragm breakage, immediately separate the pump from the power supply!
Make sure the pump cannot be put back into operation by accident!
Dismantle the dosing head without connecting the pump to the power supply and make sure no dosing liquid has entered the pump housing.
Proceed as described in section 9.4.1 Dosing liquid in the pump housing.

To avoid any danger resulting from diaphragm breakage, observe the following:

- Perform regular maintenance. See section 9.1 Regular maintenance.
- Never operate the pump with blocked or soiled drain opening.
 – If the drain opening is blocked or soiled, proceed as described in section 9.6 Repairs.
- Never attach a hose to the drain opening. If a hose is attached to the drain opening, it is impossible to recognize escaping dosing liquid.
- Take suitable precautions to prevent harm to health and damage to property from escaping dosing liquid.
- Never operate the pump with damaged or loose dosing head screws.

2.7 Operation with loose dosing head screws

Warning
Danger of explosion, if dosing liquid has entered the pump housing!
Operation with damaged or loose dosing head screws can lead to dosing liquid entering the pump housing.
If the pump was operated with damaged or loose dosing head screws, immediately separate the pump from the power supply!
Make sure the pump cannot be put back into operation by accident!
Dismantle the dosing head without connecting the pump to the power supply and make sure no dosing liquid has entered the pump housing.
Proceed as described in section 9.4.1 Dosing liquid in the pump housing.
3. General description

The Grundfos DME dosing pump is a self-priming diaphragm pump. The pump consists of:

- a cabinet incorporating the drive unit and electronics,
- a dosing head with back plate, diaphragm, valves, connections and vent valve,
- a control panel incorporating display and buttons. The control panel is fitted either to the front or to the side of the cabinet.

The motor is controlled in such a way that the dosing gets as even and constant as possible, irrespective of the capacity range in which the pump is operating. This is carried out as follows:

The speed of the suction stroke is kept constant and the stroke relatively short, irrespective of the capacity. Contrary to conventional pumps, which generate the dosing stroke as a short pulse, the duration of the dosing stroke will be as long as possible. Thus, an even dosing without peak values is ensured. As the pump is always dosing at full stroke length, it ensures the same high accuracy and suction capability, irrespective of the capacity, which is infinitely variable in the ratio of 1:800.

The pump features an LCD display and a user-friendly control panel which gives access to the pump functions.

3.1 Applications

The pump is suitable for liquid, non-abrasive, non-flammable and non-combustible media strictly in accordance with the instructions in these installation and operating instructions.

Areas of application (among others)

- drinking water treatment
- wastewater treatment
- cooling water treatment
- washing systems
- process water treatment
- chemical industry.

3.2 Improper operating method

The operational safety of the pump is only guaranteed if it is used in accordance with section 3.1 Applications.

Warning

Other applications or the operation of pumps in ambient and operating conditions, which are not approved, are considered improper and are not permitted. Grundfos cannot be held liable for any damage resulting from incorrect use.

Warning

The pump must be equipped with a diaphragm leakage detection when used for crystallizing media.

Warning

The pump is NOT approved for operation in potentially explosive areas!

Warning

A sunscreen is required for outdoor installation!
3.3 Type key

(Cannot be used for pump configuration.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Example</th>
<th>DME</th>
<th>60</th>
<th>10</th>
<th>AR</th>
<th>PP/</th>
<th>E</th>
<th>C</th>
<th>F</th>
<th>2</th>
<th>1</th>
<th>A3/A3</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum capacity [l/h]:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>940</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum pressure [bar]:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control variant:</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Standard + Profibus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dosing head material:</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>PVDF</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 stainless steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gasket material:</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valve ball material:</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ceramics</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Glass</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 stainless steel</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE (only 375 and 940)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Hastelloy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control panel:</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Front-fitted</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Side-fitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage:</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 x 120 V, 60 Hz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 x 100-240 V, 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valves:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Standard valve</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Spring-loaded valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection, suction/discharge:</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3/4” FNPT</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>1 1/4” FNPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains plug:</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>
4. Technical data

4.1 Mechanical data

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity*1 [gph (l/h)]</td>
<td>15.8 (60)</td>
<td>39.6 (150)</td>
<td>99.2 (376)</td>
<td>248.0 (940)</td>
</tr>
<tr>
<td>Maximum capacity with anti-cavitation 75 %*1 [gph (l/h)]</td>
<td>11.9 (45)</td>
<td>29.6 (112)</td>
<td>74.2 (282)</td>
<td>186.0 (705)</td>
</tr>
<tr>
<td>Maximum capacity with anti-cavitation 50 %*1 [gph (l/h)]</td>
<td>8.8 (33.4)</td>
<td>22.0 (83.5)</td>
<td>55.4 (210)</td>
<td>138.5 (525)</td>
</tr>
<tr>
<td>Maximum capacity with anti-cavitation 25 %*1 [gph (l/h)]</td>
<td>4.2 (16.1)</td>
<td>10.7 (40.4)</td>
<td>26.6 (101)</td>
<td>66.5 (252)</td>
</tr>
<tr>
<td>Maximum pressure [psi (bar)]</td>
<td>145 (10)</td>
<td>58 (4)</td>
<td>145 (10)</td>
<td>58 (4)</td>
</tr>
<tr>
<td>Maximum stroke rate per minute [strokes/min.]</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum suction lift during operation [ft (m)]</td>
<td>19.6 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum suction lift when priming with wet valves [ft (m)]</td>
<td>4.9 (1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum viscosity with spring-loaded valves [mPa s]*2</td>
<td>3000 [mPa s] at 50 % capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum viscosity without spring-loaded valves [mPa s]*2</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragm diameter [mm]</td>
<td>79</td>
<td>106</td>
<td>124</td>
<td>173</td>
</tr>
<tr>
<td>Liquid temperature [°F (°C)]</td>
<td>32 to 122 (0 to 50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature [°F (°C)]</td>
<td>32 to 113 (0 to 45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of repeatability</td>
<td>± 1 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound pressure level [dB(A)]</td>
<td>< 70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Irrespective of counter pressure
*2 Maximum suction lift 1 meter

4.2 Electrical data

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage [VAC]</td>
<td>1 x 100-240 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum current consumption [A]</td>
<td>at 100 V</td>
<td>1.25</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at 230 V</td>
<td>0.67</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Maximum power consumption P1 [W]</td>
<td>67.1</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency [Hz]</td>
<td>50/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation category</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation class</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply cable</td>
<td>1.5 m H05RN-F with plug</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Input/output data

The pump offers various input and output options, depending on control variant.

Signal input

- Voltage in level sensor input [VDC] | 5
- Voltage in pulse input [VDC] | 5
- Minimum pulse-repetition period [ms] | 3.3
- Impedance in analog 0/4-20 mA input [Ω] | 250
- The analog input requires a signal which is isolated from frame. Min. resistance to frame: 50 kΩ
- Maximum loop resistance in pulse signal circuit [Ω] | 250
- Maximum loop resistance in level signal circuit [Ω] | 250

Signal output

- Maximum load of alarm relay output, at ohmic load [A] | 2
- Maximum voltage, alarm relay output [V] | 42
4.4 Dimensions
See dimensions at the end of these instructions.
All dimensions are in inches (mm).

5. Installation

5.1 Safety instructions

⚠️

- Liquid is under pressure and may be hazardous.
- When working with chemicals, local safety rules and regulations must be observed (e.g. wear protective clothes).
- Before starting work on the dosing pump and system, disconnect the electricity supply to the pump, ensuring that it cannot be accidentally switched on. Before reconnecting the electricity supply, make sure that the dosing hose is positioned in such a way that any chemical left in the dosing head is not ejected, thereby exposing persons to danger.
- If the vent valve in the dosing head is used, it must be connected to a hose which is led back to the tank.
- When changing a chemical, make sure that the materials of the dosing pump and system are resistant to the new chemical. If there is any risk of chemical reaction between the two types of chemicals, clean the pump and system thoroughly before adding the new chemical. Proceed as follows: Place the suction tube in water and press the button until residual chemical has been removed.

Note: When the buttons and are pressed simultaneously, the pump can be set to run for a specific number of seconds at maximum capacity. The remaining number of seconds will appear in the display. The maximum value is 300 seconds.

5.2 Installation environment

- Exposure to direct sunlight should be avoided. This applies especially to pumps with plastic dosing heads, as this material can be damaged by sunlight.
- If the pump is installed outside, an enclosure or similar protection is required to protect the pump against rain and similar weather.

5.3 Installation of pump

- See also the installation example in section 5.4 Installation example.

The dosing head may contain water from the factory test. If a liquid which must not come into contact with water is to be dosed, it is recommended to let the pump run with another liquid to remove the water from the dosing head before installation.

Cross-tighten the dosing head screws with a torque wrench once before commissioning and again after 2-5 operating hours at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm (+0.5/-0 Nm)).

- Always install the pump on the supporting foot with vertical suction and discharge ports.
- Always use suitable tools for the mounting of plastic parts. Never apply unnecessary force.
- Make sure that the dosing pump and system are designed in such a way that neither system equipment nor buildings are damaged in case of leakage from the pump or rupture of hoses/pipes. The installation of leakage hoses and collecting tanks is recommended.
- Make sure that the drain hole in the dosing head points downwards, see fig. 1.

Never attach a hose to the drain opening.

Fig. 1

Caution

Cross-tighten the dosing head screws with a torque wrench once before commissioning and again after 2-5 operating hours at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm (+0.5/-0 Nm)).

- Always install the pump on the supporting foot with vertical suction and discharge ports.
- Always use suitable tools for the mounting of plastic parts. Never apply unnecessary force.
- Make sure that the dosing pump and system are designed in such a way that neither system equipment nor buildings are damaged in case of leakage from the pump or rupture of hoses/pipes. The installation of leakage hoses and collecting tanks is recommended.
- Make sure that the drain hole in the dosing head points downwards, see fig. 1.

Never attach a hose to the drain opening.

Fig. 1

Caution

Cross-tighten the dosing head screws with a torque wrench once before commissioning and again after 2-5 operating hours at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm (+0.5/-0 Nm)).

- Always install the pump on the supporting foot with vertical suction and discharge ports.
- Always use suitable tools for the mounting of plastic parts. Never apply unnecessary force.
- Make sure that the dosing pump and system are designed in such a way that neither system equipment nor buildings are damaged in case of leakage from the pump or rupture of hoses/pipes. The installation of leakage hoses and collecting tanks is recommended.
- Make sure that the drain hole in the dosing head points downwards, see fig. 1.

Never attach a hose to the drain opening.

Fig. 1
5.4 Installation example
The drawing in fig. 2 shows an installation example.

The DME pump can be installed in many different ways. The sketch below shows an example with side-fitted control panel. The tank is a Grundfos chemical tank with a Grundfos level control unit.

Fig. 2

5.5 Electrical connection
- The electrical connection of the pump should be carried out by qualified persons in accordance with local regulations.
- For electrical data of the pump, see section 4.2 Electrical data.
- Do not lay signal cables, if any, together with power cables.

Warning
Danger to life due to non-tripping of the residual current device (RCD)!

If the pump is connected to an electric installation where a residual current device (RCD) is used as an additional protection, this RCD must trip when ground fault currents with DC content (pulsating DC) and smooth DC ground fault currents occur. This means that a RCD type B, sensitive to universal current, must be used.
5.6 Connection overview

Cable 1: Input for analog signal, pulse signal and diaphragm leakage

<table>
<thead>
<tr>
<th>Number / color</th>
<th>1 / brown</th>
<th>2 / white</th>
<th>3 / blue</th>
<th>4 / black</th>
<th>5 / grey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog</td>
<td>(-) 4-20 mA input</td>
<td>(+) 4-20 mA input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Potential-free</td>
<td>Potential-free</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>5 V</td>
<td></td>
<td></td>
<td></td>
<td>Ground</td>
</tr>
<tr>
<td>Number / color</td>
<td>2 / black</td>
<td>3 / brown</td>
<td>4 / blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragm leakage*</td>
<td>5 V</td>
<td>PNP</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Grundfos diaphragm leakage sensor, product number 96534443.

Cable 2: Alarm relay output

<table>
<thead>
<tr>
<th>Number / color</th>
<th>1 / brown</th>
<th>2 / white</th>
<th>3 / blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm relay</td>
<td>Common</td>
<td>Normally open</td>
<td>Normally closed</td>
</tr>
</tbody>
</table>

Fig. 3

Cable 1: See table below
Cable 2: See table below
Cable 3: See table below
Cable 4: See table below
Cable 3: Input for dosing stop and dosing monitoring or dosing output

<table>
<thead>
<tr>
<th>Number / color</th>
<th>1 / brown</th>
<th>2 / white</th>
<th>3 / blue</th>
<th>4 / black</th>
<th>5 / grey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing stop (input)</td>
<td>5 V</td>
<td></td>
<td></td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Dosing stop (input)</td>
<td>Potential-free</td>
<td>Potential-free</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing monitoring</td>
<td>Potential-free</td>
<td>Potential-free</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing monitoring</td>
<td>Ground</td>
<td>5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing output (pump running)</td>
<td>Open collector (NPN)*</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Open collector (NPN) can be used for a relay or a lamp.

1. Using the internal 5 VDC power supply:
 Max. current: 100 mA
2. Using an external power supply:
 Max. 24 VDC - 100 mA

Fig. 4

Cable 4: Level input

<table>
<thead>
<tr>
<th>Number / color</th>
<th>1 / brown</th>
<th>2 / white</th>
<th>3 / blue</th>
<th>4 / black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty tank</td>
<td>Potential-free*</td>
<td>Potential-free*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty tank</td>
<td>5 V</td>
<td></td>
<td></td>
<td>Ground</td>
</tr>
<tr>
<td>Low level</td>
<td>Potential-free*</td>
<td>Potential-free*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low level</td>
<td>5 V</td>
<td></td>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>

* The function of the potential-free contact sets can be selected via the control panel (NO = normally open and NC = normally closed), see section 6.21 Input setup.
6. Functions

6.1 Control panel

- LCD display. (See section 6.8)
- Navigation/ settings. (See section 6.8)
- Green indicator light. (See section 6.6)
- Maximum capacity (priming). (See section 6.3)
- Red indicator light. (See section 6.6)
- M12 connection analog/pulse/ leakage input. (See sections 6.11, 6.12, 6.5)
- M12 connection stop dosing. (See section 6.2)
- M12 connection level control. (See section 6.4)
- Cable for Profinet control. (See section 6.7)
- Connection alarm relay. (See section 6.6)
- Menu. (See section 6.8)
- On/off button. (See section 6.8)

Fig. 5
6.2 Start/stop of pump
The pump can be started/stoped in two different ways:

• Locally on the pump control panel.
• By means of an external on/off switch.

See connection overview in section 5.6 Connection overview.

6.3 Priming/venting of pump
The pump control panel incorporates a button. Press this button if the maximum pump capacity is required over a short period, e.g. during start-up.

When the button is released, the pump automatically returns to the previous operating mode.

During priming/venting, it is recommended to let the pump run without a counter pressure or to open the vent valve.

Note: When the buttons and are pressed simultaneously, the pump can be set to run for a specific number of seconds at maximum capacity.

The remaining number of seconds will appear in the display. The maximum value is 300 seconds.

6.4 Level control
The pump can be fitted with a level control unit for monitoring of the chemical level in the tank.

The pump can react to two level signals. The pump will react differently, depending on the influence on the individual level sensors.

<table>
<thead>
<tr>
<th>Level sensors</th>
<th>Pump reaction</th>
</tr>
</thead>
</table>
| Upper sensor activated (closed contact) | • Red indicator light is on.
• Pump running.
• Alarm relay activated. |
| Lower sensor activated (closed contact) | • Red indicator light is on.
• Pump stopped.
• Alarm relay activated. |

For connection of the level control unit and alarm output, see section 5.6 Connection overview.

6.5 Diaphragm leakage sensor
The pump can be fitted with a diaphragm leakage sensor, which detects diaphragm leakage.

The sensor should be connected to the drain hole in the dosing head.

In case of diaphragm leakage, the signal from the sensor generates an alarm and the alarm relay will be activated. See also section 6.6 Alarm output and indicator lights.

For connection of the diaphragm leakage sensor, see section 5.6 Connection overview.
6.6 Alarm output and indicator lights

The green and red indicator lights on the pump are used for operating and fault indication. In control variant "AR", the pump can activate an external alarm signal by means of a built-in alarm relay which must only be connected to a safety extra low voltage (SELV) connection.

The alarm signal is activated by means of an internal potential-free contact.

The functions of the indicator lights and the built-in alarm relay appear from the table below.

Note

Connect the alarm relay only to voltages which comply with the SELV requirements in EN/IEC 60 335-1.

The alarm signal is activated by means of an internal potential-free contact.

The functions of the indicator lights and the built-in alarm relay appear from the table below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Green LED</th>
<th>Red LED</th>
<th>Display</th>
<th>Alarm output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump running</td>
<td>On</td>
<td>Off</td>
<td>Normal indication</td>
<td></td>
</tr>
<tr>
<td>Set to stop</td>
<td>Flashing</td>
<td>Off</td>
<td>Normal indication</td>
<td></td>
</tr>
<tr>
<td>Pump fault</td>
<td>Off</td>
<td>On</td>
<td>EEPROM</td>
<td></td>
</tr>
<tr>
<td>Supply failure</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Pump running, low chemical level*¹</td>
<td>On</td>
<td>On</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Empty tank*¹</td>
<td>Off</td>
<td>On</td>
<td>EMPTY</td>
<td></td>
</tr>
<tr>
<td>Analog signal < 2 mA</td>
<td>Off</td>
<td>On</td>
<td>NO mA</td>
<td></td>
</tr>
<tr>
<td>The pump is running, but the dosed quantity is too small according to the signal from the dosing monitor*²</td>
<td>On</td>
<td>On</td>
<td>NO FLOW</td>
<td></td>
</tr>
<tr>
<td>Overheating</td>
<td>Off</td>
<td>On</td>
<td>MAX. TEMP.</td>
<td></td>
</tr>
<tr>
<td>Internal communication fault</td>
<td>Off</td>
<td>On</td>
<td>INT. COM.</td>
<td></td>
</tr>
<tr>
<td>Internal Hall fault*³</td>
<td>Off</td>
<td>On</td>
<td>HALL</td>
<td></td>
</tr>
<tr>
<td>Diaphragm leakage*⁴</td>
<td>Off</td>
<td>On</td>
<td>LEAKAGE</td>
<td></td>
</tr>
<tr>
<td>Maximum pressure exceeded*⁴</td>
<td>Off*⁵</td>
<td>On</td>
<td>OVERLOAD</td>
<td></td>
</tr>
</tbody>
</table>
6.7 Fieldbus communication

The pump can be configured for fieldbus applications (Profibus). Apart from the usual installation and operating instructions, Profibus pumps are supplied with a special Profibus installation and operating instructions.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Green LED</th>
<th>Red LED</th>
<th>Display</th>
<th>Alarm output</th>
</tr>
</thead>
<tbody>
<tr>
<td>More pulses than capacity</td>
<td>On</td>
<td>On</td>
<td>MAX. FLOW</td>
<td></td>
</tr>
<tr>
<td>No motor rotation detected*³</td>
<td>Off</td>
<td>On</td>
<td>ORIGO</td>
<td></td>
</tr>
</tbody>
</table>

*¹ Requires connection to level sensors. See section 6.22 *Empty tank (alarm).*

*² Requires activation of the dosing monitoring function and connection to a dosing monitor.

*³ Please contact a Grundfos service center.

*⁴ Alarms can be reset when the faults have been corrected.

*⁵ The pump will make 10 attempts to restart before going into permanent OFF mode.
6.8 Menu

The pump features a user-friendly menu which is activated by pressing the \(\text{Button} \) button. During start-up, all texts will appear in English language. To select language, see section 6.20 Language.

All menu items are described in the following sections. When \(\checkmark \) appears at a menu item, it means that this item is activated. By selecting "RETURN" anywhere in the menu structure, you will return to the operating display without changes.

![Menu Diagram]

① Applies only to versions with Profibus

Fig. 6

- **Manual**
 - See section 6.10

- **Pulse**
 - See section 6.11

- **Analog**
 - See section 6.12

- **Timer**
 - See section 6.13

- **Batch**
 - See section 6.14

- **Anti-Cav**
 - See section 6.15

- **Calibr**
 - See section 8.

- **Counters**
 - See section 6.17

- **Lock**
 - See section 6.25

- **Default**
 - See section 6.18

- **Return**
 - See section 6.19

- **Language**
 - See section 6.20

- **Max. Cap.**
 - See section 6.16

- **Input**
 - See section 6.21

- **Alarm**
 - See section 6.22

- **Unit**
 - See section 6.23
6.9 Operating modes

Note: The displayed l and ml values are only reliable if the pump has been calibrated to the actual installation, see section 8. Calibration.

The pump can run in five different operating modes:
- Manual
- Pulse
- Analog
- Timer (internal batch control)
- Batch (external batch control)
See description in the following sections.

6.10 Manual

The pump is dosing as constantly and evenly as possible, without any external signals.
Set the quantity to be dosed in l/h or ml/h. The pump automatically changes between the measuring units.
Setting range:
DME 60: 0.0198 - 15.8 gph (75 ml/h - 60 l/h)
DME 150: 0.0528 - 39.2 gph (200 ml/h - 150 l/h)
DME 375: 0.132 - 99 gph (500 ml/h - 375 l/h)
DME 940: 0.317 - 248.3 gph (1200 ml/h - 940 l/h)

Fig. 7

6.11 Pulse

The pump is dosing according to an external pulse signal, i.e. a water meter with pulse output or a controller.
Set the quantity to be dosed per pulse in ml/pulse. The pump adjusts its capacity according to two factors:
- Frequency of external pulses.
- The set quantity per pulse.
The pump measures the time between two pulses and then calculates the speed giving the capacity required (set quantity per pulse multiplied by the pulse frequency).
The pump does not start until it has received the second pulse, and thus it delivers a constant flow as in the case of "manual" control. The pump calculates a speed for each pulse received.
The pump stops
- when the time between two pulses is three times longer than the time between the two previous pulses, or
- if the time between two pulses exceeds 2 minutes.
The pump will operate at the latest calculated speed until one of the two cases occurs.
The pump stops at the point reached in its duty cycle and starts at this point again having received two new pulses.
Setting range:
DME 60: 0.000625 ml/pulse - 120 ml/pulse
DME 150: 0.00156 ml/pulse - 300 ml/pulse
DME 375: 0.00392 ml/pulse - 750 ml/pulse
DME 940: 0.00980 ml/pulse - 1880 ml/pulse

Fig. 8

If the set quantity per pulse multiplied by the pulse frequency exceeds the pump capacity, the pump will run at maximum capacity. Excess pulses will be ignored and "MAX. FLOW" will appear in the display.
6.12 Analog

The pump is dosing according to an external analog signal. The dosed quantity is proportional to the input value in mA.

4-20 (default): 4 mA = 0 %.
20 mA = 100 %.

20-4: 4 mA = 100 %.
20 mA = 0 %.

0-20: 0 mA = 0 %.
20 mA = 100 %.

20-0: 0 mA = 100 %.
20 mA = 0 %.

See fig. 9.

The capacity limitation will influence the capacity. 100 % corresponds to the maximum capacity of the pump or the set maximum capacity, see section 6.16 Capacity limitation.

The analog input requires a signal which is isolated from frame. Min. resistance to frame: 50 kΩ.

![Fig. 9](image)

Change the analog mode as illustrated in fig. 11:

![Fig. 11](image)

If 4-20 mA or 20-4 mA is selected and the signal falls below 2 mA, the pump will indicate a fault. This situation occurs if the connection is interrupted, for instance if the wire is damaged.
6.13 Timer
The pump is dosing the set quantity in batches at the maximum capacity or the set maximum capacity, see section 6.16 Capacity limitation.
The time until the first dosing "NX" and the following sequences "IN" can be set in minutes, hours and days. The maximum time limit is 9 days, 23 hours and 59 minutes (9:23:59). The lowest acceptable value is 1 minute. The internal timer continues even if the pump is stopped by means of the on/off button, empty tank or stop signal, see fig. 12.
During operation, "NX" will always count down from "IN" to zero. In this way, the remaining time until the next batch can always be read.
"IN" must be higher than the time required to perform one batch. If "IN" is lower, the next batch will be ignored.
In case of supply failure, the set quantity to be dosed, the "IN" time and the remaining "NX" time are stored. When the supply is reconnected, the pump will start up with the "NX" time at the time of the supply failure. In this way, the timer cycle will continue, but it has been delayed by the duration of the supply failure.

Fig. 12
Setting range, adjustable volume per batch:
DME 60: 0.0017 to 31.7 gal (6.25 ml - 120 l)
DME 150: 0.0041 to 79.3 gal (15.6 ml - 300 l)
DME 375: 0.01 to 198.1 gal (39.1 ml - 750 l)
DME 940: 0.025 to 496.7 gal (97.9 ml - 1880 l)
Only values corresponding to complete dosing strokes (according to the calibration factor) can be selected. The minimum setting depends on the calibration factor. The minimum setting shown above corresponds to the default calibration value.

Example:
If the calibration factor is 625 (= 6.25 ml/stroke), the minimum settable value in timer or batch mode will be 6.25 ml (= 1 stroke) -> the next will be 12.5 ml (= 2 strokes), etc.
These steps will continue up to a value corresponding to 100 dosing strokes. Above this value, the setting range has standard steps as in other operating modes.
If the calibration factor is changed after the setting of timer or batch mode, the pump will automatically recalculate a new number of dosing strokes per batch and change the display value to the nearest possible value compared to the first one set.

Fig. 13
6.14 Batch

The pump is dosing the set quantity in batches at the maximum capacity or the set maximum capacity, see section 6.16 Capacity limitation.

The quantity is dosed every time the pump receives an external pulse.

If the pump receives new pulses before the previous batch is performed, these pulses will be ignored.

![Fig. 14](image1)

The setting range is the same as for Timer, see section 6.13 Timer.

6.15 Anti-cavitation

The pump features an anti-cavitation function. When this function is selected, the pump extends its suction stroke, resulting in optimized priming.

The anti-cavitation function is used:
- when pumping liquids of high viscosity
- in the case of a long suction tube
- in the case of a high suction lift.

Depending on the circumstances, the motor speed during the suction stroke can be reduced by 75%, 50% or 25% compared to the normal motor speed during the suction stroke.

The maximum pump capacity is reduced when the anti-cavitation function is selected. See section 4.1 Mechanical data.

![Fig. 15](image2)
6.16 Capacity limitation
This function offers the possibility of reducing the maximum pump capacity (MAX. CAP.). It influences the functions in which the pump is normally operating at maximum capacity.
Under normal operating conditions, the pump cannot operate at a capacity which is higher than the one stated in the display. This does not apply to the maximum capacity button, see section 6.3 Priming/venting of pump.

6.17 Counters
The pump can display "non-resettable" counters for:
- "QUANTITY" Accumulated value of dosed quantity in liters or US gallons.
- "STROKES" Accumulated number of dosing strokes.
- "HOURS" Accumulated number of operating hours.
- "POWER ON" Accumulated number of times the electricity supply has been switched on.

Fig. 17

Operating display

Fig. 18

Operating display
6.18 Resetting

When "DEFAULT" is activated, the pump will return to the factory settings.

Note: The calibration is also set back to the default setting. This means that a new calibration is required when the "DEFAULT" function has been used.

Default settings are the factory settings of standard pumps. Select "DEFAULT" in the "SETUP" menu.

Default settings:
- Operating mode: Manual
- Capacity: Maximum capacity
- Control panel lock: Unlocked
- Default lock code: 2583
- Anti-cavitation: Not active
- Analog signal: 4-20 mA
- Digital inputs: NO (normally open)
- Capacity limitation: Maximum capacity
- Alarm reset required to restart the pump
- Dosing monitoring: Off
- Language: English
- Units: Metric

6.19 Return

The "RETURN" function makes it possible to return from any level in the menu to the operating display without changes after the menu functions have been used.

6.20 Language

The display text can be displayed in one of the following languages:

- English
- German
- French
- Italian
- Spanish
- Portuguese
- Dutch
- Swedish
- Finnish
- Danish
- Czech
- Slovak
- Polish
- Russian
6.21 Input setup

Fig. 22 shows all possible settings.

The inputs for level, stop dosing and diaphragm leakage can be changed from NO (normally open) to NC (normally closed) function. If changed, the inputs must be short-circuited in normal operation.

The dosing monitoring input can be changed from "OFF" to "ON".

For the analog input, one of the following signal types can be selected:

- 4-20 mA (default)
- 20-4 mA
- 0-20 mA
- 20-0 mA.

See also section 6.12 Analog.
6.22 Empty tank (alarm)

The alarm function can be set to "AUT. RES." or "MAN. RES.". This function is used when the level sensor indicates "EMPTY".

The alarm can be reset automatically (AUT. RES.) or manually (MAN. RES.).

For more information about other alarm functions, see section 6.6 Alarm output and indicator lights.

6.23 Measuring units

It is possible to select metric units (liter/milliliter) or US units (gallons/milliliter).

Metric measuring units:
- **In manual and analog modes**, set the quantity to be dosed in liters per hour (l/h) or milliliters per hour (ml/h).
- **In pulse mode**, set the quantity to be dosed in ml/pulse. The actual capacity is indicated in liters per hour (l/h) or milliliters per hour (ml/h).
- **For calibration**, set the quantity to be dosed in ml per 100 strokes.
- **In timer and batch modes**, set the quantity to be dosed in liters (l) or milliliters (ml).
- Under the "QUANTITY" menu item in the "COUNTERS" menu, the dosed quantity is indicated in liters.

US measuring units:
- **In manual and analog modes**, set the quantity to be dosed in gallons per hour (gph).
- **In pulse mode**, set the quantity to be dosed in ml/pulse. The actual capacity is indicated in gallons per hour (gph).
- **For calibration**, set the quantity to be dosed in ml per 100 strokes.
- **In timer and batch modes**, set the quantity to be dosed in gallons (gal).
- Under the "QUANTITY" menu item in the "COUNTERS" menu, the dosed quantity is indicated in US gallons (gal).

Fig. 23
6.24 Dosing monitoring

The pump incorporates a dosing monitoring input (see connection overview in fig. 3).

The pump can be fitted with a dosing monitor, which detects ineffective dosing strokes. The dosing monitor is designed to monitor the dosing of liquids which may cause gas accumulation in the dosing head, thus stopping the dosing process even if the pump is still operating.

During the dosing process, the dosing monitor gives pulse signals to the monitor input so that the pump can compare performed dosing strokes (from internal stroke sensor) with externally measured physical strokes (from the dosing monitor). If an external dosing stroke is not measured as a result of the internal dosing stroke, this is considered a fault that may have been provoked by empty tank or gas in the dosing head.

The dosing monitor should be connected to the input for dosing monitoring. This input must be configured for dosing monitoring. Once the input has been set to dosing monitoring and a dosing monitor has been connected and set, the dosing monitoring function will be active.
6.25 Control panel lock

It is possible to lock the buttons on the control panel to prevent malfunction of the pump. The locking function can be set to "ON" or "OFF". The default setting is "OFF".

A PIN code must be entered to change from "OFF" to "ON". When "ON" is selected for the first time, "0000" will appear in the display. If a code has already been entered, it will appear when an attempt to change to "ON" is made. This code can either be re-entered or changed.

If no code has been entered, a code must be set in the same way as the "NX" and "IN" values described in section 6.13 Timer.

If a code has already been entered, active digits are flashing.

If attempts are made to operate the pump in locked condition, "LOCKED" will appear in the display for 2 seconds, followed by "0000". A code must be entered. If the entering of a code has not been started within 10 seconds, the operating display without changes will appear.

If a wrong code is entered, "LOCKED" will appear in the display for 2 seconds, followed by "0000". A new code must be entered. If the entering of a code has not been started within 10 seconds, the operating display without changes will appear. This display will also appear if the entering of the correct code exceeds 2 minutes.

If the locking function has been activated but the control panel is unlocked, the control panel will be locked automatically if it is not operated for 2 minutes.

The locking function can also be reactivated by selecting "ON" in the "LOCK" menu. The previously entered code will then appear and must be re-entered by pressing the button four times. The code can also be changed.

The control panel can be unlocked either by means of the selected code or the factory code 2583.

The following buttons and inputs are still active when the panel is locked:
- Priming (button).
- On/off button.
- All external inputs.

[Diagram of control panel lock and unlock]

Activating the locking function and locking the control panel:
1. Select "LOCK" in the menu.
2. Select "ON" by means of the buttons and confirm with .
3. Enter or re-enter a code by means of the buttons , , and .

The locking function has now been activated and the control panel is locked.

Unlocking the control panel (without deactivating the locking function):
1. Press once. "LOCKED" appears in the display for 2 seconds, followed by "0000".
2. Enter the code by means of the buttons , and .

The control panel has now been unlocked and will automatically be locked again if the control panel is not operated for 2 minutes.

Deactivating the locking function:
1. Unlock the control panel as described above.
2. Select "LOCK" in the menu.
3. Select "OFF" by means of the buttons and confirm with .

The locking function has now been deactivated and the control panel is unlocked.

* The panel can always be unlocked with code 2583.
7. Start-up

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| **1** | **Prior to start-up, retighten the dosing head screws:**
• Cross-tighten the dosing head screws with a torque wrench once before commissioning and again after 2-5 operating hours at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm. (+0.5/-0 Nm)). |
| **2** | **Connect the hoses/pipes:**
• Connect the suction and dosing tubes/pipes to the pump.
• Connect a tube to the vent valve, if required, and lead the hose to the tank.
• Never attach a hose to the drain opening. |
| **3** | **Connect the cables:**
• Connect the control/level cables, if any, to the pump, see section 5.6 Connection overview. |
| **4** | **Switch on the electricity supply:**
• The display is on.
• The green indicator light is flashing (the pump has stopped).
• Select language, if required, see section 6.20 Language. |
| **5** | **Select the operating mode (see section 6.9 Operating modes):**
• Manual.
• Pulse.
• Analog.
• Timer.
• Batch. |
| **6** | **Start the pump:**
• Start the pump by pressing the on/off button.
• The green indicator light is permanently on. |
| **7** | **Priming/venting:**
• Press the button on the pump control panel and let the pump run without a counter pressure. Open the vent valve, if required. When the buttons and are pressed simultaneously during priming, the pump can be set to run for a specific number of seconds at maximum capacity. |
| **8** | **Calibration:**
• When the pump has been primed and is running at the right counter pressure, calibrate the pump, see section 8. Calibration |

If the pump is not operating satisfactorily, see section 10. Fault finding chart.
8. Calibration

It is important that the pump is calibrated after installation to ensure that the correct value (ml/h or l/h) appears in the display.

The calibration can be carried out in two different ways:

- **Direct calibration.**
 The dosed quantity of 100 strokes is measured directly. See section 8.1 Direct calibration.
- **Check calibration.** See section 8.2 Check calibration.

![Diagram showing the calibration process](image_url)

Fig. 26
8.1 Direct calibration

Before calibration, make sure:
- that the pump is installed with foot valve, injection valve, etc. in the existing system.
- that the pump is running at the counter pressure it is supposed to operate at (adjust the counter pressure valve, if required).
- that the pump is operating with the correct suction lift.

To carry out a direct calibration, proceed as follows:

<table>
<thead>
<tr>
<th>Action</th>
<th>Pump display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prime the dosing head and the suction tubing.</td>
<td></td>
</tr>
<tr>
<td>2. Stop the pump. The green LED is flashing.</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Fill a graduated glass with dosing liquid, Q_1.
 - DME 60: approx. 1.5 l
 - DME 150: approx. 2.5 l
 - DME 375: approx. 6 l
 - DME 940: approx. 14 l | |
| 4. Read and note the quantity Q_1. | |
| 5. Place the suction tubing in the graduated glass. | |
| 6. Go to the calibration menu, see section **6.8 Menu**. | |
| 7. Press the button twice. | |
| 8. The pump is performing 100 dosing strokes. | |
| 9. The factory-calibration value appears in the display. | |
| 10. Remove the suction tubing from the graduated glass and read Q_2. | |
| 11. Set the display value to $Q_d = Q_1 - Q_2$. | |
| 12. Confirm with the button. | |
| 13. The pump is now calibrated and returns to the operating display. | |

Q_1
Q_2
Q_d
8.2 Check calibration

In check calibration, the calibration value is calculated by reading the consumption of chemical in a specific period and comparing this with the number of dosing strokes performed in the same period. This calibration method is very accurate and especially suitable for check calibration after long periods of operation or if direct calibration is impossible. The calibration can for instance be carried out when the chemical tank is replaced or filled.

To carry out a check calibration, proceed as follows:
1. Stop the pump by pressing the button.
2. Read the counter and note the number of dosing strokes, see section 6.17 Counters.
3. Read and note the quantity in the chemical tank.
4. Start the pump by pressing the button and let it run for at least 1 hour. The longer the pump is operating, the more accurate the calibration will be.
5. Stop the pump by pressing the button.
6. Read the counter and note the number of dosing strokes, see section 6.17 Counters.
7. Read and note the quantity in the chemical tank.
8. Calculate the dosed quantity in ml and the number of dosing strokes performed during the operating period.
9. Calculate the calibration value as follows: (dosed quantity in ml/dosing strokes) x 100.
10. Set the calculated value in the calibration menu.

9. Service

In order to ensure a long service life and dosing accuracy, wearing parts such as diaphragms and valves must be regularly checked for signs of wear. Where necessary, replace worn parts with original spare parts made from suitable materials.

Should you have any questions, please contact your service partner.

9.1 Regular maintenance

<table>
<thead>
<tr>
<th>Interval</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Check, if liquid leaks from the drain opening (fig. 1) and if the drain opening is blocked or soiled. If so, follow the instructions given in section 9.4 Diaphragm breakage.</td>
</tr>
<tr>
<td></td>
<td>Check, if liquid leaks from the dosing head or valves.</td>
</tr>
<tr>
<td></td>
<td>If the pump was operated with damaged or loose dosing head screws, immediately separate the pump from the power supply! Follow the instructions given in section 9.5 Operation with loose dosing head screws.</td>
</tr>
<tr>
<td></td>
<td>If necessary, tighten valves and cap nuts, or perform service (see 9.3 Perform service).</td>
</tr>
<tr>
<td>Weekly</td>
<td>Clean all pump surfaces with a dry and clean cloth.</td>
</tr>
<tr>
<td>Every 3 months</td>
<td>Check dosing head screws. If necessary, cross-tighten dosing head screws with a torque wrench at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm (+0.5/-0 Nm)). Replace damaged screws immediately.</td>
</tr>
<tr>
<td>Every 2 years or 8000 operating hours*</td>
<td>Replace diaphragm and valves (see 9.3 Perform service)</td>
</tr>
</tbody>
</table>

* For media which result in increased wear, the service interval must be shortened.

9.2 Cleaning

If necessary, clean all pump surfaces with a dry and clean cloth.
9.3 Perform service

Only spare parts and accessories from Grundfos should be used for maintenance. The usage of non-original spare parts and accessories renders any liability for resulting damages null and void.

Further information about carrying out maintenance can be found in the service kit catalog on our homepage (www.grundfos.com).

Warning
Risk of chemical burns!
When dosing dangerous media, observe the corresponding precautions in the safety data sheets!
Wear protective clothing (gloves and goggles) when working on the dosing head, connections or lines!
Do not allow any chemicals to leak from the pump. Collect and dispose of all chemicals correctly!

Before any work to the pump, the pump must be disconnected from the power supply. The system must be pressureless!

9.3.1 Dosing head overview

![Dosing head, exploded view (without deaeration valve)](image)

1. Safety diaphragm
2. Flange
3. Diaphragm
4. Valve on discharge side
5. Dosing head
6. Valve on suction side
7. Screws
8. Dosing head front plate (only PP, PVDF)
9. Drain opening

9.3.2 Dismantling the diaphragm and valves

Before dismantling, read section 9.4 Diaphragm breakage and section 9.5 Operation with loose dosing head screws thoroughly.

Warning
Danger of explosion, if dosing liquid has entered the pump housing!

If the diaphragm is possibly damaged or if the pump was operated with damaged or loose dosing head screws, don’t connect the pump to the power supply!

This section refers to fig. 27.

1. Make system pressureless.
2. Empty the dosing head before maintenance and flush it, if necessary.
3. Take suitable steps to ensure that the returning liquid is safely collected.
4. Dismantle suction, pressure and deaeration hoses.
5. Unscrew deaeration valve.
6. Dismantle valves on suction and discharge side (4, 6).
7. Loosen screws (7) on the dosing head (5).
8. Remove the screws, in case of PP or PVDF dosing head together with the front plate (8).
9. Remove the dosing head (5).
10. Unscrew diaphragm (3) counter-clockwise and remove it.
11. Make sure the drain opening (9) is not blocked or soiled. Clean if necessary.
12. Check the safety diaphragm (1) for wear and damage.

If nothing indicates that dosing liquid has entered the pump housing, and if the safety diaphragm is not worn or damaged, go on as described in section 9.3.3 Reassembling the diaphragm and valves. Otherwise proceed as described in section 9.4.1 Dosing liquid in the pump housing.
9.3.3 Reassembling the diaphragm and valves

The pump must only be reassembled, if nothing indicates that dosing liquid has entered the pump housing. Otherwise proceed as described in section 9.4.1 Dosing liquid in the pump housing.

This section refers to fig. 27.

1. Screw on new diaphragm (3) clockwise.
2. Attach the dosing head (5).
3. Install screws (7), in case of PP or PVDF dosing head together with the front plate (8), and cross-tighten with a torque wrench.
 - Torque: 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 Nm (+ 0.5/- 0 Nm)).
4. Install new valves (4, 6).
 - Observe the flow direction (indicated by an arrow on the valve)!
5. Install the deaeration valve.
6. Connect suction, pressure and deaeration hoses.

Cross-tighten the dosing head screws with a torque wrench once before commissioning and again after 2-5 operating hours at torque 4.06 ft·lb (+0.37/-0 ft·lb) (5.5 Nm (+0.5/-0 Nm)).

7. Deaerate dosing pump (see section 6.3 Priming/venting of pump).

9.4 Diaphragm breakage

If the diaphragm leaks or is broken, dosing liquid escapes from the drain opening (fig. 27, pos. 9) on the dosing head flange.

In case of diaphragm breakage, the safety diaphragm (fig. 27, pos. 1) protects the pump housing against ingress of dosing liquid.

When dosing crystallizing liquids the drain opening can be blocked by crystallization. If the pump is not taken out of operation immediately, a pressure can build up between the diaphragm (fig. 27, pos. 3) and the safety diaphragm in the flange (fig. 27, pos. 1). The pressure can press dosing liquid through the safety diaphragm into the pump housing.

Most dosing liquids don’t cause any danger when entering the pump housing. However a view liquids can cause a chemical reaction with inner parts of the pump. In the worst case, this reaction can produce explosive gases in the pump housing.

Warning

Danger of explosion, if dosing liquid has entered the pump housing!

Operation with damaged diaphragm can lead to dosing liquid entering the pump housing.

In case of diaphragm breakage, immediately separate the pump from the power supply!

Make sure the pump cannot be put back into operation by accident!

Dismantle the dosing head without connecting the pump to the power supply and make sure no dosing liquid has entered the pump housing.

Proceed as described in section 9.3.2 Dismantling the diaphragm and valves.

To avoid any danger resulting from diaphragm breakage, observe the following:

- Perform regular maintenance. See section 9.1 Regular maintenance.
- Never operate the pump with blocked or soiled drain opening.
 - If the drain opening is blocked or soiled, proceed as described in section 9.3.2 Dismantling the diaphragm and valves.
- Never attach a hose to the drain opening. If a hose is attached to the drain opening, it is impossible to recognize escaping dosing liquid.
- Take suitable precautions to prevent harm to health and damage to property from escaping dosing liquid.
- Never operate the pump with damaged or loose dosing head screws.
9.4.1 Dosing liquid in the pump housing

Warning
*
Danger of explosion!
*
Immediately separate the pump from the power supply!
*
Make sure the pump cannot be put back into operation by accident!
*

If dosing liquid has entered the pump housing, or if the safety diaphragm is damaged or worn:
- Send the pump to Grundfos for repair, following the instructions given in section 9.6 Repairs.
- If a repair isn’t economically reasonable, dispose of the pump observing the information in section 11. Disposal.

9.5 Operation with loose dosing head screws

Warning
*
Danger of explosion, if dosing liquid has entered the pump housing!
*
Operation with damaged or loose dosing head screws can lead to dosing liquid entering the pump housing.
*
If the pump was operated with damaged or loose dosing head screws, immediately separate the pump from the power supply!
*
Make sure the pump cannot be put back into operation by accident!
*
Dismantle the dosing head without connecting the pump to the power supply and make sure no dosing liquid has entered the pump housing.
*
Proceed as described in section 9.4.1 Dosing liquid in the pump housing.

9.6 Repairs

Warning
*
The pump housing must only be opened by personnel authorized by Grundfos!
*
Repairs must only be carried out by authorized and qualified personnel!
*
Switch off the pump and disconnect it from the voltage supply before carrying out maintenance work and repairs!
*

Note
*
The replacement of the supply cable must be carried out by an authorized Grundfos service workshop.
*

After consulting Grundfos, please send the pump, together with the safety declaration completed by a specialist, to Grundfos. The safety declaration can be found at the end of these instructions. It must be copied, completed and attached to the pump.
*

Caution
*
The pump must be cleaned prior to dispatch!
*
If dosing liquid has possibly entered the pump housing, state that explicitly in the safety declaration! Observe section 9.4 Diaphragm breakage.
*

If the above requirements are not met, Grundfos may refuse to accept delivery of the pump. The shipping costs will be charged to the sender.
10. Fault finding chart

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dosing has stopped or the output is too low.</td>
<td>Valves leaking or blocked.</td>
<td>Check and clean valves.</td>
</tr>
<tr>
<td></td>
<td>Valves incorrectly installed.</td>
<td>Remove and fit valves. Check that the arrow on the valve casing is pointing in the liquid flow direction. Check that all O-rings have been fitted correctly.</td>
</tr>
<tr>
<td></td>
<td>Suction valve or suction pipe/hose leaking or blocked.</td>
<td>Clean and seal the suction pipe/hose.</td>
</tr>
<tr>
<td></td>
<td>Suction lift too high.</td>
<td>Install the pump in a lower position.</td>
</tr>
<tr>
<td></td>
<td>Viscosity too high.</td>
<td>Install a priming tank.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select the anti-cavitation function, see section 6.15 Anti-cavitation.</td>
</tr>
<tr>
<td>Pump out of calibration.</td>
<td></td>
<td>Install a pipe/hose with larger cross-section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fit spring-loaded valves.</td>
</tr>
<tr>
<td>Pump dosing too little or too much.</td>
<td>Pump out of calibration.</td>
<td>Calibrate the pump, see section 8. Calibration.</td>
</tr>
<tr>
<td>Pump dosing irregularly.</td>
<td>Valves leaking or blocked.</td>
<td>Calibrate the pump, see section 8. Calibration.</td>
</tr>
<tr>
<td>Leakage from drain hole.</td>
<td>Diaphragm defective.</td>
<td>Install a new diaphragm.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm not fastened properly.</td>
<td>Install a new diaphragm and ensure that the diaphragm is fastened properly.</td>
</tr>
<tr>
<td></td>
<td>Counter-pressure too high (measured at the pump discharge port).</td>
<td>Check the system. Check the injection valve.</td>
</tr>
<tr>
<td></td>
<td>Sediment in dosing head.</td>
<td>Clean/flush the dosing head.</td>
</tr>
</tbody>
</table>

11. Disposal

This product and all its associated parts must be disposed of in an environmentally friendly manner. Use appropriate waste collection services. If there is no such facility or the facility refuses to accept the materials used in the product, the product can be sent to the nearest Grundfos company or Grundfos service center.

Subject to alterations.
Español (MX) Instrucciones de instalación y operación

CONTENIDO

1. GARANTIA LIMITADA 38
2. Instrucciones de seguridad 38
 2.1 Símbolos utilizados en este documento 38
 2.2 Cualificación y formación del personal 38
 2.3 Instrucciones de seguridad para el operario/usuario 39
 2.4 Seguridad del sistema en caso de fallo en la bomba dosificadora 39
 2.5 Dosificación de productos químicos 39
 2.6 Rotura de la membrana 40
 2.7 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados 40
3. Descripción general 41
 3.1 Aplicaciones 41
 3.2 Métodos de funcionamiento inadecuados 41
 3.3 Nomenclatura 42
4. Datos técnicos 43
 4.1 Datos mecánicos 43
 4.2 Datos eléctricos 43
 4.3 Datos de entrada/salida 43
 4.4 Dimensiones 44
5. Instalación 44
 5.1 Instrucciones de seguridad 44
 5.2 Entorno de la instalación 44
 5.3 Instalación de la bomba 44
 5.4 Ejemplo de instalación 45
 5.5 Conexión eléctrica 45
 5.6 Esquema de conexiones 46
6. Funciones 48
 6.1 Panel de control 48
 6.2 Arranque/parada de la bomba 49
 6.3 Cebado/purga de la bomba 49
 6.4 Control de nivel 49
 6.5 Sensor de fugas del diafragma 49
 6.6 Luces testigo y salida de alarma 50
 6.7 Comunicación con fieldbus 51
 6.8 Menú 52
 6.9 Modos de funcionamiento 53
 6.10 Manual 53
 6.11 Impulso 53
 6.12 Analógico 54
 6.13 Temporizador 54
 6.14 Batch 56
 6.15 Anticavitación 56
 6.16 Limitación de la capacidad 57
 6.17 Contadores 57
 6.18 Rearme 58
 6.19 Volver 58
 6.20 Idioma 58
 6.21 Estructura de las entradas 59
 6.22 Tanque vacío (alarma) 60
 6.23 Unidades de medición 60
 6.24 Control de dosificación 61
 6.25 Bloqueo del panel de control 62
7. Puesta en marcha 63
8. Calibrado 64
 8.1 Calibrado directo 65
 8.2 Calibrado por control 66
9. Servicio 66
 9.1 Mantenimiento periódico 66
 9.2 Limpieza 66
 9.3 Ejecución de una inspección 67
 9.3.1 Despiece del cabezal dosificador 67
 9.3.2 Desmontaje de la membrana y las válvulas 67
 9.3.3 Montaje de la membrana y las válvulas 67
 9.4 Rotura de la membrana 68
 9.4.1 Líquido dosificado en la carcasa de la bomba 68
 9.5 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados 69
 9.6 Reparaciones 69
10. Localización de fallos 70
11. Eliminación 70

Aviso
Leer estas instrucciones de instalación y operación antes de realizar la instalación. La instalación y la operación deben cumplir con las normativas locales en vigor.
1. GARANTIA LIMITADA
Los productos fabricados por GRUNDFOS PUMPS CORPORATION (Grundfos) se garantizan sola-
mente al usuario original de estar libres de defectos en sus materiales y en su mano de obra por un
periodo de 24 meses a partir de la fecha de instalación,
pero no más de 30 meses a partir de la fecha de fabricación. La responsabilidad legal de Grundfos
que cubre esta garantía se limitará a reparar o reem-
plazar a opción de Grundfos, sin cargo, LAB fábrica
Grundfos o estación de servicio autorizado, cual-
quier producto manufacturado por Grundfos.
Grundfos no se hará responsable de ningún costo de
remoción, instalación, transporte o cualquier otro
cargo que pueda surgir en relación con un reclamo de
garantía.
Los productos vendidos pero no manufacturados por
Grundfos están sujetos a la garantía proporcionada
por el fabricante de dichos productos y no por la
garantía de Grundfos. Grundfos no será responsable
por el daño o desgaste de productos provocados por
condiciones de operación anormales, accidentes,
abuso, maltrato, alteraciones o reparaciones no
autorizadas, o si el producto no esté en el estado de
acuerdo con el instructivo de instalación y operación
impreso de Grundfos.
Para obtener el servicio que cubre esta garantía, el
producto defectuoso debe regresarse al distribuidor
de productos Grundfos a quien se compró junto con
la prueba de compra y fecha de instalación, fecha de
falla y datos de instalación.
El distribuidor se pondrá en contacto con Grundfos o
con una estación de servicio autorizada para instruc-
ciones. Cualquier producto defectuoso regresado a
Grundfos o a una estación de servicio autorizada,
debéberá ser enviado prepagado; con documentación
que apoye el reclamo de garantía y se debe incluir,
si así se pide, una Autorización de Devolución de
Material.
GRUNDFOS NO SERA RESPONSABLE DE NIN-
GUN DAÑO, PERDIDA O Gasto SECUNDARIO
QUE SURJA COMO CONSECUENCIA DE LA INS-
TALACION, USO, NI DE NINGUNA OTRA CAUSA.
NO HAY GARANTIAS EXPLICITAS O IMPLICITAS.
INCLUYENDO LA COMERCIAL PARA UN PROPO-
SITO PARTICULAR, QUE SE EXTIENDA MAS ALLA
DE LAS GARANTIAS DESCRITAS O REFERIDAS
ARRIBA.
Algunas autoridades no permiten la exclusión o limita-
tión de daños secundarios o resultantes y algunas
autoridades no permiten limitar acciones en la dura-
ción de las garantías implicadas. Por lo tanto, las
limitaciones o exclusiones de arriba pueden no apli-
car. Esta garantía confiere derechos legales especí-
ficos, usted puede contar otros derechos que varían
de un lugar a otro.

2. Instrucciones de seguridad
Estas instrucciones de instalación y funcionamiento contienen instrucciones generales que deben
seguirse durante la instalación, puesta en marcha y
mantenimiento de la bomba. Por lo tanto, el installa-
dor y el operador deben leerlas antes de realizar la
instalación y puesta en marcha. Asimismo, deben
estar disponibles en el lugar de la instalación en todo
dommento.

2.1 Símbolos utilizados en este documento

Aviso
Si estas instrucciones no son observa-
das puede tener como resultado daños
personales.

Precaución
Si estas instrucciones de seguri-
dad no son observadas pueden
producirse averías o daños en el
equipo.

Nota
Notas o instrucciones que facilitan el
trabajo y garantizan un funcionamiento
seguro.

2.2 Cualificación y formación del personal
El personal responsable de la instalación, funciona-
miento y mantenimiento debe estar debidamente
cualificado para estas tareas. El operario debe defi-
nir de forma precisa las áreas de responsabilidad,
los niveles de autoridad y los procedimientos de
supervisión del personal. Si es necesario, debe for-
marse debidamente al personal.

Riesgos de no respetar las instrucciones de
seguridad
La inobservancia de las instrucciones de seguridad puede tener consecuencias peligrosas para el per-
sonal, el medio ambiente y la bomba y puede causar
la pérdida del derecho a cualquier reclamación por
daños y perjuicios.
Todo ello puede provocar los siguientes peligros:
• Lesiones personales por exposición a las influen-
ncias eléctricas, mecánicas y químicas.
• Daños al medio ambiente y lesiones personales
por fugas de sustancias nocivas.
2.3 Instrucciones de seguridad para el operario/usuario
Deben seguirse tanto las instrucciones de seguridad descritas en estas instrucciones, como las normativas nacionales sobre protección de la salud, protección del medio ambiente y prevención de accidentes y cualquier otra regulación sobre el trabajo, funcionamiento y seguridad del operario.
Debe tenerse en cuenta la información adjunta a la bomba.
Los escapes de sustancias peligrosas, deben eliminarse de una manera no perjudicial para el personal o el medio ambiente.
Deben prevenirse los daños causados por la energía eléctrica, consulte las normativas de la compañía local de electricidad.

Antes de llevar a cabo cualquier operación relacionada con la bomba, asegúrese de que esta se encuentre desconectada del suministro eléctrico. ¡El sistema no debe contener presión!

Nota
La toma de red es el separador que separa la bomba de la red.

Solo deberían utilizarse accesorios y recambios originales. La utilización de otras piezas puede dar lugar a la exención de responsabilidad ante cualquier consecuencia que se produzca.

2.4 Seguridad del sistema en caso de fallo en la bomba dosificadora
La bomba dosificadora ha sido diseñada siguiendo las últimas tecnologías y se fabrica y se prueba cuidadosamente.
Si a pesar de ello se produce algún fallo, la seguridad del sistema en su conjunto debe estar garantizada. Para ello, utilice las funciones de control y supervisión pertinentes para ello.

Asegúrese de que los productos químicos que se liberan de la bomba o las tuberías dañadas no causan daño a las piezas del sistema y a los edificios.

Se recomienda la instalación de soluciones de control de fugas y de bandejas de goteo.

2.5 Dosificación de productos químicos

Aviso
Antes de conectar de nuevo el suministro de red, las tuberías dosificadoras deben conectarse de tal manera que los productos químicos situados en el cabezal dosificador no puedan pulverizarse y poner en riesgo a las personas.
El líquido dosificado está presurizado y puede ser perjudicial para la salud y el medio ambiente.

Aviso
Cuando se trabaja con productos químicos, debe seguirse la regulación de prevención de accidentes aplicable a la instalación (por ejemplo, llevar ropa protectora).
¡Tenga en consideración las hojas técnicas y de seguridad del fabricante de los productos químicos cuando se manejan productos químicos!

Aviso
La bomba debe equiparse con un dispositivo de protección contra fugas en la membrana si el líquido bombeado es susceptible de cristalizarse.

Debe conectarse una tubería de purga, que se lleva a un contenedor, por ejemplo una bandeja de goteo, a la válvula de purga.

¡El líquido dosificado debe estar en estado líquido agregado!

¡Tenga en cuenta los puntos de ebullición y congelación del fluido dosificado!

La resistencia de las piezas que están en contacto con el líquido dosificado, como el cabezal dosificador, la válvula esférica, juntas y tuberías, depende del líquido, la presión de funcionamiento y la temperatura media.

¡Véase el catálogo para asegurarse de que las piezas en contacto con el líquido dosificado son resistentes a dicho líquido en las condiciones de funcionamiento!
Si tiene cualquier duda respecto a la resistencia del material y la idoneidad de la bomba para un líquido específico, por favor contacte con Grundfos.
2.6 Rotura de la membrana
Si la membrana presenta fugas o se rompe, el líquido dosificado puede escapar a través de la abertura de drenaje (fig. 1), situada en el cabezal dosificador. Consulte la sección 9.4 Rotura de la membrana.

Aviso
¡La penetración del líquido dosificado en la carcasa de la bomba representa un peligro de explosión!

El funcionamiento con una membrana dañada puede dar lugar a la penetración del líquido dosificado en la carcasa de la bomba.

¡Si la membrana se rompe, separe inmediatamente la bomba del punto de suministro eléctrico!

¡Asegúrese de que la bomba no pueda volver a ponerse en marcha por accidente!

Desmonte el cabezal dosificador sin conectar la bomba al suministro eléctrico y asegúrese de que el líquido dosificado no haya penetrado en la carcasa de la bomba. Proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.

Respete lo descrito a continuación para evitar todo peligro resultante de una rotura de la membrana:

• Lleve a cabo operaciones de mantenimiento periódico. Consulte la sección 9.1 Mantenimiento periódico.

• No haga funcionar la bomba con la abertura de drenaje obstruida o sucia.
 – Si la abertura de drenaje está obstruida o sucia, proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.

• No conecte una manguera a la abertura de drenaje. Si lo hace, no podrá determinar si existe un escape del líquido dosificado.

• Tome las precauciones adecuadas para evitar daños personales y materiales resultantes de un escape del líquido dosificado.

• No haga funcionar la bomba con los tornillos del cabezal dosificador dañados o sueltos.

2.7 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados

Aviso
¡La penetración del líquido dosificado en la carcasa de la bomba representa un peligro de explosión!

El funcionamiento con los tornillos de la cabeza dosificadora mal apretados o dañados puede dar lugar a la penetración del líquido dosificado en la carcasa de la bomba.

¡Si la bomba ha funcionado con los tornillos de la cabeza dosificadora mal apretados o dañados, desconéctela inmediatamente del suministro eléctrico!

¡Asegúrese de que la bomba no pueda volver a ponerse en marcha por accidente!

Desmonte el cabezal dosificador sin conectar la bomba al suministro eléctrico y asegúrese de que el líquido dosificado no haya penetrado en la carcasa de la bomba. Proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.
3. Descripción general
La bomba dosificadora Grundfos DME es una bomba autocebante de diafragma.
La bomba consta de:
 • una caja con equipo de accionamiento y componentes electrónicos,
 • un cabezal de dosificación con placa posterior, diafragma, válvulas, conexiones y válvula de purga,
 • un panel de control con pantalla y botones.
El panel de control está montado en la parte frontal o en el lateral de la caja.
El motor está controlado para que la dosificación sea lo más uniforme y constante posible, independientemente de la gama de capacidad de la bomba.
Esto se realiza como sigue:
La velocidad de la carrera de aspiración se mantiene constante y la carrera relativamente corta, independientemente de la capacidad. Contrariamente a las bombas convencionales, que generan la carrera de dosificación como un impulso breve, la duración de la carrera de dosificación será lo más larga posible. De este modo se garantiza una dosificación uniforme sin picos. La bomba está siempre dosificando con longitud de carrera máxima, por lo que garantiza la misma gran exactitud y capacidad de aspiración, independientemente de la capacidad, que es infinitamente variable de 1:800.
La bomba incorpora una pantalla LCD y un panel de control de fácil utilización, que da acceso a las funciones de la bomba.

3.1 Aplicaciones
La bomba es apta para el bombeo de líquidos no abrasivos, no inflamables y no combustibles de conformidad estricta con la información que contienen estas instrucciones de instalación y funcionamiento.
Áreas de aplicación (entre otras)
 • Tratamiento de agua potable
 • Tratamiento de aguas residuales
 • Tratamiento de agua de refrigeración
 • Sistemas de lavado
 • Tratamiento de agua de procesos
 • Industria química.

3.2 Métodos de funcionamiento inadecuados
La seguridad de funcionamiento de la bomba está garantizada solo si se utiliza de acuerdo con la sección 3.1 Aplicaciones.

Aviso
Otras aplicaciones o el uso de las bombas en condiciones ambientales y de funcionamiento no autorizadas se consideran actos inadecuados y no están permitidas. Grundfos no se hace responsable de los daños causados por el uso incorrecto.

Aviso
La bomba debe equiparse con un dispositivo de protección contra fugas en la membrana si el líquido bombeado es susceptible de cristalizarse.

Aviso
¡La bomba NO está certificada para funcionamiento en áreas potencialmente explosivas!

Aviso
¡Para instalaciones al aire libre se requiere un filtro solar!
3.3 Nomenclatura
(No puede utilizarse para la configuración de la bomba.)

<table>
<thead>
<tr>
<th>Código</th>
<th>Ejemplo</th>
<th>DME</th>
<th>60</th>
<th>10</th>
<th>AR</th>
<th>PP/</th>
<th>E/</th>
<th>C</th>
<th>F</th>
<th>2</th>
<th>1</th>
<th>A3/A3</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gama de bomba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacidad máxima [l/h]:</td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>375</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>940</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presión máxima [bar]:</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Versión de control:</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Estándar</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Estándar + Profibus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material del cabezal de dosificación:</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polipropileno</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>PVDF</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 acero inoxidable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material de juntas:</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material de la bola de válvula:</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cerámica</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Vidrio</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 acero inoxidable</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE (sólo 375 y 940)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Hastelloy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panel de control:</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Montaje frontal</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Montaje lateral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tensión:</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 x 120 V, 60 Hz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 x 100-240 V, 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Válvulas:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Válvula estándar</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Válvula de muelle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conexión, aspiración/descarga:</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3/4" FNPT</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>1 1/4" FNPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clavija:</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EEUU, CAN</td>
<td></td>
</tr>
</tbody>
</table>
4. Datos técnicos

4.1 Datos mecánicos

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad máxima*1 [gph (l/h)]</td>
<td>15.8 (60)</td>
<td>39.6 (150)</td>
<td>99.2 (376)</td>
<td>248.0 (940)</td>
</tr>
<tr>
<td>Capacidad máxima con anticavitación 75 %*1 [gph (l/h)]</td>
<td>11.9 (45)</td>
<td>29.6 (112)</td>
<td>74.2 (282)</td>
<td>186.0 (705)</td>
</tr>
<tr>
<td>Capacidad máxima con anticavitación 50 %*1 [gph (l/h)]</td>
<td>8.8 (33.4)</td>
<td>22.0 (83.5)</td>
<td>55.4 (210)</td>
<td>138.5 (525)</td>
</tr>
<tr>
<td>Capacidad máxima con anticavitación 25 %*1 [gph (l/h)]</td>
<td>4.2 (16.1)</td>
<td>10.7 (40.4)</td>
<td>26.6 (101)</td>
<td>66.5 (252)</td>
</tr>
<tr>
<td>Presión máxima [psi (bar)]</td>
<td>145 (10)</td>
<td>58 (4)</td>
<td>145 (10)</td>
<td>58 (4)</td>
</tr>
<tr>
<td>Carreras máximas por minuto [carreras/min.]</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura máxima de aspiración durante el funcionamiento [ft (m)]</td>
<td>19.6 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura máxima de aspiración al cebar con válvulas mojadas [ft (m)]</td>
<td>4.9 (1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosidad máxima con válvulas de muelle*2 [mPa s]</td>
<td>3000 [mPa s] al 50 % de la capacidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosidad máxima sin válvulas de muelle*2 [mPa s]</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diámetro del diafragma [mm]</td>
<td>79</td>
<td>106</td>
<td>124</td>
<td>173</td>
</tr>
<tr>
<td>Temperatura del líquido [°F (°C)]</td>
<td>32 a 122 (0 a 50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura ambiente [°F (°C)]</td>
<td>32 a 113 (0 a 45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exactitud de repetibilidad</td>
<td>± 1 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel de ruido [dB(A)]</td>
<td>< 70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*C1 Independientemente de la contrapresión
*2Altura máxima de aspiración 1 metro

4.2 Datos eléctricos

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suministro eléctrico [VAC]</td>
<td>1 x 100-240 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo máximo de corriente [A]</td>
<td>a 100 V: 1.25</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a 230 V: 0.67</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo máx. de potencia P1 [W]</td>
<td>67.1</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia [Hz]</td>
<td>50/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado de protección</td>
<td>IP 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categoría de sobretensión</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado de contaminación</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clase de aislamiento</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable eléctrico</td>
<td>1.5 m H05RN-F con clavija</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Datos de entrada/salida

La bomba ofrece varias posibilidades de entrada y salida, dependiendo del tipo de control.

Entrada de señal

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión en la entrada del sensor de nivel [VDC]</td>
<td>5</td>
</tr>
<tr>
<td>Tensión en la entrada del impulso [VDC]</td>
<td>5</td>
</tr>
<tr>
<td>Periodo mínimo de repetición de impulso [ms]</td>
<td>3.3</td>
</tr>
<tr>
<td>Impedancia en entrada analógica 0/4-20 mA [Ω]</td>
<td>250</td>
</tr>
</tbody>
</table>

Salida de señal

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga máxima de la salida del relé de alarma, a carga ohmica [A]</td>
<td>2</td>
</tr>
<tr>
<td>Tensión máxima, salida del relé de alarma [V]</td>
<td>42</td>
</tr>
</tbody>
</table>
4.4 Dimensiones
Ver dimensiones al final de estas instrucciones. Todas las dimensiones están en inches (mm).

5. Instalación
5.1 Instrucciones de seguridad

- El líquido tiene presión y puede ser peligroso.
- Al trabajar con sustancias químicas hay que cumplir con las normativas locales de seguridad (p.ej. llevar ropas protectoras).
- Antes de empezar a trabajar en el sistema y la bomba dosificadora, desconectar el suministro eléctrico a la bomba, y comprobar que no puede conectarse accidentalmente. Antes de volver a conectar el suministro eléctrico, comprobar que la manguera de dosificación está colocada de modo que cualquier sustancia química que haya quedado en el cabezal de dosificación no es expulsada, siendo peligroso para las personas.
- Si se utiliza la válvula de purga en el cabezal de dosificación, ésta debe conectarse a una manguera que vuelva al tanque.
- Al cambiar la sustancia química, comprobar que los materiales del sistema y de la bomba dosificadora son resistentes a la nueva sustancia química. Si hay riesgo de reacción química entre los dos tipos de sustancias químicas, limpiar la bomba y el sistema a fondo antes de añadir la nueva sustancia química.

Proceder como sigue:
Colocar la manguera de aspiración en el agua y pulsar el botón hasta que no queden residuos químicos.

Nota: Al pulsar los botones simultáneamente, la bomba puede ajustarse para funcionar durante unos segundos a capacidad máxima. Los segundos restantes aparecerán en la pantalla. El valor máximo es de 300 segundos.

5.2 Entorno de la instalación
- Debe evitarse la exposición a la luz directa del sol. Esto se refiere especialmente a bombas con cabezales de dosificación de plástico, ya que este material puede ser dañado por el sol.
- Si se instala la bomba en el exterior, se requiere una cubierta o una protección similar para proteger la bomba contra la lluvia y condiciones meteorológicas similares.

5.3 Instalación de la bomba
- Ver también el ejemplo de instalación en sección 5.4 Ejemplo de instalación.

El cabezal de dosificación puede contener agua de la prueba en fábrica. Si se va a dosificar un líquido que no debe entrar en contacto con el agua, se recomienda dejar que la bomba funcione con otro líquido para eliminar el agua del cabezal de dosificación antes de la instalación.

Apriete los tornillos del cabezal dosificador en orden cruzado a torque 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 N·m (+ 0.5/- 0 N·m)) empleando una llave dinamométrica antes de la puesta en servicio y, de nuevo, tras 2-5 horas de funcionamiento.

- Instalar siempre la bomba en el soporte con las conexiones de aspiración y descarga en posición vertical.
- Utilizar siempre herramientas adecuadas para el montaje de piezas de plástico. Nunca hacer fuerza innecesaria.
- Comprobar que el sistema y la bomba dosificadora están diseñados de modo que ni el equipo del sistema ni los edificios se dañen en caso de fugas de la bomba o rotura de las mangueras/tuberías. Se recomienda instalar manguitos y bandejas para las pérdidas o fugas.
- Comprobar que el orificio de purga del cabezal de dosificación esté hacia abajo, ver fig. 1.

Precaución
No conecte una manguera a la abertura de drenaje.

Fig. 1
5.4 Ejemplo de instalación
El dibujo de la fig. 2 muestra un ejemplo de instalación.

La bomba DME puede instalarse de muchas formas. Este dibujo muestra un ejemplo con panel de control lateral. El tanque es un tanque para sustancias químicas Grundfos con un control de nivel Grundfos.

Fig. 2

5.5 Conexión eléctrica
- La conexión eléctrica de la bomba debe realizarla personal cualificado de acuerdo con las normativas locales.
- Para los datos eléctricos de la bomba, ver sección 4.2 Datos eléctricos.
- No colocar cables de señales, si los hay, junto con cables de potencia.

Aviso
¡Peligro de muerte debido al no-disparo del dispositivo de corriente residual (RCD, por sus siglas en inglés)!
Si la bomba está conectada a una instalación eléctrica dotada de un dispositivo de corriente residual (RCD) como medio de protección complementario, el RCD deberá dispararse cuando se produzcan derivaciones a tierra con contenido de corriente directa (corriente directa pulsante) y derivaciones a tierra de corriente directa continua. Esto significa que debe utilizarse un RCD de tipo B, sensible a la corriente universal.
5.6 Esquema de conexiones

Fig. 3

Cable 1: Entrada para señal analógica, señal de impulso y fuga del diafragma

<table>
<thead>
<tr>
<th>Número / color</th>
<th>1 / marrón</th>
<th>2 / blanco</th>
<th>3 / azul</th>
<th>4 / negro</th>
<th>5 / gris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analógico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrada (-) 4-20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrada (+) 4-20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulso</td>
<td>De libre potencial</td>
<td>De libre potencial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulso</td>
<td>5 V</td>
<td>Tierra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número / color</td>
<td>2 / negro</td>
<td>3 / marrón</td>
<td>4 / azul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuga de membrana*</td>
<td>5 V</td>
<td>PNP</td>
<td>Tierra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Sensor de fuga de membrana Grundfos, código 96534443.

Cable 2: Salida de relé de alarma

<table>
<thead>
<tr>
<th>Número / color</th>
<th>1 / marrón</th>
<th>2 / blanco</th>
<th>3 / azul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relé de alarma</td>
<td>Común</td>
<td>Normalmente abierto</td>
<td>Normalmente cerrado</td>
</tr>
</tbody>
</table>
Cable 3: Entrada para parada de dosificación y control de dosificación o salida de dosificación

<table>
<thead>
<tr>
<th>Número / color</th>
<th>1 / marrón</th>
<th>2 / blanco</th>
<th>3 / azul</th>
<th>4 / negro</th>
<th>5 / gris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parada dosificadora (entrada)</td>
<td>5 V</td>
<td></td>
<td>Tierra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parada dosificadora (entrada)</td>
<td>De libre potencial</td>
<td>De libre potencial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control de dosificación</td>
<td>De libre potencial</td>
<td>De libre potencial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control de dosificación</td>
<td>Tierra</td>
<td>5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salida de dosificación (bomba funcionando)</td>
<td>Colector abierto (NPN)*</td>
<td>Tierra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Se puede usar un colector abierto (NPN) para un relé o una lámpara.

1. **Usando la fuente interna de suministro**
 5 VDC: Intensidad máx.: 100 mA

2. **Usando una fuente de suministro externa:** Máx. 24 VDC - 100 mA

![Fig. 4](TM0378685006)

Cable 4: Entrada de nivel

<table>
<thead>
<tr>
<th>Número / color</th>
<th>1 / marrón</th>
<th>2 / blanco</th>
<th>3 / azul</th>
<th>4 / negro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Función</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanque vacío</td>
<td>De libre potencial*</td>
<td>De libre potencial*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanque vacío</td>
<td>5 V</td>
<td></td>
<td>Tierra</td>
<td></td>
</tr>
<tr>
<td>Nivel bajo</td>
<td>De libre potencial*</td>
<td>De libre potencial*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel bajo</td>
<td>5 V</td>
<td></td>
<td>Tierra</td>
<td></td>
</tr>
</tbody>
</table>

* La función de los juegos de contactos de libre potencial puede seleccionarse por medio del panel de control (NO = normalmente abierto y NC = normalmente cerrado), ver sección [6.21 Estructura de las entradas](#).
6. Funciones

6.1 Panel de control

- Pantalla LCD, ver sección 6.8
- Navegación/ajustes, ver sección 6.8
- Luz testigo verde, ver sección 6.6
- Capacidad máxima (cebado), ver sección 6.3
- Luz testigo roja, ver sección 6.6
- Conexión M12 entrada analógica/impulso/fuga, ver secciones 6.11, 6.12, 6.5
- Cable para control Profibus, ver sección 6.7
- Menú, ver sección 6.8
- Navegación/ajustes, ver sección 6.8
- Botón on/off, ver sección 6.8
- Conexión M12 parada de dosificación, ver sección 6.2
- Conexión M12 control de nivel, ver sección 6.4
- Suministro eléctrico
- Conexión relé de alarma, ver sección 6.6

Fig. 5
6.2 Arranque/parada de la bomba

Puede arrancarse/pararse la bomba de dos formas diferentes:
- Localmente en el panel de control de la bomba.
- Mediante un interruptor on/off externo.
 Ver esquema de conexiones en sección 5.6 Esquema de conexiones.

6.3 Cebado/purga de la bomba

El panel de control de la bomba incorpora un botón . Pulsar este botón si se requiere la capacidad máxima de la bomba durante un breve periodo de tiempo, p.ej. durante el arranque. Al soltar el botón, la bomba vuelve automáticamente al modo de funcionamiento anterior.

Durante el cebado/purga se recomienda dejar que la bomba funcione sin contrapresión o abrir la válvula de purga.

Nota: Al pulsar los botones y simultáneamente, la bomba puede ajustarse para funcionar durante unos segundos a capacidad máxima. Los segundos restantes aparecerán en la pantalla. El valor máximo es de 300 segundos.

6.4 Control de nivel

Puede montarse en la bomba un control de nivel para controlar el nivel de la sustancia química en el tanque.

La bomba puede reaccionar a dos señales de nivel. Reaccionará de forma distinta dependiendo de la influencia en los sensores de nivel individuales.

<table>
<thead>
<tr>
<th>Sensores de nivel</th>
<th>Reacción de la bomba</th>
</tr>
</thead>
</table>
| Sensor superior activado (contacto cerrado) | • Luz testigo roja encendida.
• Bomba funcionando.
• Relé de alarma activado. |
| Sensor inferior activado (contacto cerrado) | • Luz testigo roja encendida.
• Bomba parada.
• Relé de alarma activado. |

Respecto a la conexión del control de nivel y salida de alarma, ver sección 5.6 Esquema de conexiones.

6.5 Sensor de fugas del diafragma

Puede montarse a la bomba un sensor de fugas del diafragma que detecta fugas del mismo.

El sensor debe conectarse al orificio de purga del cabezal de dosificación.

Si el diafragma tiene fugas, la señal del sensor genera una alarma y se activará el relé de alarma.

Ver también sección 6.6 Luces testigo y salida de alarma.

Respecto a la conexión del sensor de fugas del diafragma, ver sección 5.6 Esquema de conexiones.
6.6 Luces testigo y salida de alarma
Se utilizan las luces testigo verde y roja en la bomba para indicación de funcionamiento y fallo. En la variante de control "AR", la bomba puede activar una señal de alarma externa mediante el relé de alarma incorporado que sólo debe conectarse a una conexión de seguridad de voltaje extra-bajo (SELV).

<table>
<thead>
<tr>
<th>Condición</th>
<th>Luz testigo verde</th>
<th>Luz testigo roja</th>
<th>Pantalla</th>
<th>Salida de alarma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba funcionando</td>
<td>Encendida</td>
<td>Apagada</td>
<td>Indicación normal</td>
<td></td>
</tr>
<tr>
<td>Ajustada a parada</td>
<td>Intermitente</td>
<td>Apagada</td>
<td>Indicación normal</td>
<td></td>
</tr>
<tr>
<td>Fallo de la bomba</td>
<td>Apagada</td>
<td>Encendida</td>
<td>EEPROM</td>
<td></td>
</tr>
<tr>
<td>Fallo del suministro eléctrico</td>
<td>Apagada</td>
<td>Apagada</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Bomba funcionando, nivel bajo de sustancia química*1</td>
<td>Encendida</td>
<td>Encendida</td>
<td>BAJO</td>
<td></td>
</tr>
<tr>
<td>Tanque vacío*1</td>
<td>Apagada</td>
<td>Encendida</td>
<td>VACIO</td>
<td></td>
</tr>
<tr>
<td>Señal analógica < 2 mA</td>
<td>Apagada</td>
<td>Encendida</td>
<td>NO mA</td>
<td></td>
</tr>
<tr>
<td>La bomba está funcionando, pero la cantidad dosificada es demasiado pequeña de acuerdo con la señal del monitor de dosificación*2</td>
<td>Encendida</td>
<td>Encendida</td>
<td>SIN CAUD.</td>
<td></td>
</tr>
<tr>
<td>Sobrecaentamiento</td>
<td>Apagada</td>
<td>Encendida</td>
<td>TEMP. MAX.</td>
<td></td>
</tr>
<tr>
<td>Fallo de comunicación interna</td>
<td>Apagada</td>
<td>Encendida</td>
<td>COM. INT.</td>
<td></td>
</tr>
<tr>
<td>Fallo interno Hall*3</td>
<td>Apagada</td>
<td>Encendida</td>
<td>HALL</td>
<td></td>
</tr>
<tr>
<td>Fugas del diafragma*4</td>
<td>Apagada</td>
<td>Encendida</td>
<td>FUGAS</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Conectar el relé de alarma sólo para voltajes que cumplan con los requisitos SELV de EN/IEC 60 335-1.

La señal de alarma se activa mediante un contacto interno de libre potencial.
Las funciones de las luces testigo y del relé de alarma incorporado están indicadas en la siguiente tabla.
<table>
<thead>
<tr>
<th>Condición</th>
<th>Luz testigo verde</th>
<th>Luz testigo roja</th>
<th>Pantalla</th>
<th>Salida de alarma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión máx. excedida*4</td>
<td>Apagada*5</td>
<td>Encendida</td>
<td>SOBRECAR.</td>
<td></td>
</tr>
<tr>
<td>Más impulsos que capacidad</td>
<td>Encendida</td>
<td>Encendida</td>
<td>CAUD. MÁX.</td>
<td></td>
</tr>
<tr>
<td>No se detecta giro del motor*3</td>
<td>Apagada</td>
<td>Encendida</td>
<td>ORIGO</td>
<td></td>
</tr>
</tbody>
</table>

*1 Requiere conexión a sensores de nivel. Ver sección 6.22 Tanque vacío (alarma).
*2 Requiere activación de la función de control de dosificación y conexión a un controlador de dosificación.
*3 Contactar con un servicio técnico Grundfos.
*4 Se pueden rearmar las alarmas (فعال) cuando los fallos estén corregidos.
*5 La bomba intentará rearrancar 10 veces antes de entrar en el modo OFF permanente.

6.7 Comunicación con fieldbus
La bomba puede ser configurada para aplicaciones con fieldbus (Profibus). Además de las instrucciones de instalación y funcionamiento usuales, las bombas Profibus se suministran con unas instrucciones de instalación y funcionamiento especiales.
6.8 Menú
La bomba incorpora un menú de fácil utilización que se activa al pulsar el botón (). Durante la puesta en marcha, todos los textos aparecerán en inglés. Para elegir idioma, ver sección 6.20 Idioma.

Todas las líneas del menú están descritas en las siguientes secciones. Cuando () aparece en una línea del menú, esto significa que esta línea está activada. Seleccionando "VOLVER" en cualquier sitio en la estructura del menú, se vuelve a la pantalla de funcionamiento sin cambios.

Fig. 6

Ver sección 6.10
Ver sección 6.11
Ver sección 6.12
Ver sección 6.13
Ver sección 6.14
Ver sección 6.15
Ver sección 8.
Ver sección 6.17
Ver sección 6.10
Ver sección 6.11
Ver sección 6.12
Ver sección 6.13
Ver sección 6.14
Ver sección 6.15
Ver sección 8.
Ver sección 6.17

Ver sección 6.20 Idioma
Ver sección 6.21
Ver sección 6.22
Ver sección 6.23

Se aplica sólo a versiones con Profibus

Ver sección 6.10
Ver sección 6.11
Ver sección 6.12
Ver sección 6.13
Ver sección 6.14
Ver sección 6.15
Ver sección 8.
Ver sección 6.17

Ver sección 6.20
Ver sección 6.21
Ver sección 6.22
Ver sección 6.23
6.9 Modos de funcionamiento

Nota: Los valores de l y ml visualizados son sólo fiables si la bomba ha sido calibrada para la instalación actual, ver sección 8. Calibrado.

La bomba puede funcionar en cinco modos de funcionamiento distintos:

- **Manual**
- **Impulso**
- **Analógico**
- **Temporizador** (control interno del lote)
- **Batch** (control externo del lote)

Ver descripción en las siguientes secciones.

6.10 Manual

La bomba dosifica lo más constante y uniformemente posible, sin señales externas.

Ajustar la cantidad de dosificación en l/h o ml/h.

La bomba cambia automáticamente entre las unidades de medición.

Gama de ajustes:

- **DME 60**: 0.0198 - 15.8 gph (75 ml/h - 60 l/h)
- **DME 150**: 0.0528 - 39.2 gph (200 ml/h - 150 l/h)
- **DME 375**: 0.132 - 99 gph (500 ml/h - 375 l/h)
- **DME 940**: 0.317 - 248.3 gph (1200 ml/h - 940 l/h)

Fig. 7

6.11 Impulso

La bomba dosifica según una señal externa de impulsos, es decir un contador con salida de impulsos o un controlador.

Ajustar la cantidad de dosificación por impulso en ml/impulso. La bomba ajusta su capacidad según dos factores:

- La frecuencia de impulsos externos.
- La cantidad ajustada por impulso.

La bomba mide el tiempo entre dos impulsos y calcula a continuación la velocidad que dé la capacidad necesaria (cantidad ajustada por impulso multiplicada por la frecuencia de impulsos).

La bomba no arranca hasta que no reciba el segundo impulso, por lo que da un caudal constante al igual que en el caso de control "manual".

La bomba para

- cuando el tiempo entre dos impulsos es tres veces el tiempo entre los dos impulsos anteriores, o
- si el tiempo entre dos impulsos es de más de 2 minutos.

La bomba funcionará a la última velocidad calculada hasta que ocurra uno de los dos casos. La bomba para en el punto alcanzado en su ciclo de trabajo y vuelve a arrancar en este punto cuando reciba dos nuevos impulsos.

Gama de ajustes:

- **DME 60**: 0.000625 ml/impulso - 120 ml/impulso
- **DME 150**: 0.00156 ml/impulso - 300 ml/impulso
- **DME 375**: 0.00392 ml/impulso - 750 ml/impulso
- **DME 940**: 0.00980 ml/impulso - 1880 ml/impulso

Fig. 8

Si la cantidad ajustada por impulso multiplicada por la frecuencia de impulsos supera la capacidad de la bomba, ésta funcionará a su capacidad máxima. No se tendrán en cuenta los impulsos en exceso y la pantalla indicará "CAUD. MÁX.".
6.12 Analógico
La bomba dosifica según una señal analógica externa. La cantidad dosificada es proporcional al valor de entrada en mA.

4-20 (por defecto): 4 mA = 0 %.
20 mA = 100 %.

20-4:
4 mA = 100 %.
20 mA = 0 %.

0-20:
0 mA = 0 %.
20 mA = 100 %.

20-0:
0 mA = 100 %.
20 mA = 0 %.

Ver fig. 9.
Esta limitación influirá en la capacidad. El 100 % corresponde a la capacidad máxima de la bomba o a la capacidad máxima ajustada, ver sección 6.16 Limitación de la capacidad.

La entrada analógica requiere una señal que está aislada del marco. Min. resistencia al marco: 50 kΩ.

Fig. 9
![Diagrama de la bomba analógica](TM02_4498_1102)

6.13 Temporizador
La bomba dosifica la cantidad ajustada en lotes a la capacidad máxima o a la capacidad máxima ajustada, ver sección 6.16 Limitación de la capacidad.

El tiempo hasta la primera dosificación "SG" y los intervalos siguientes "IN" pueden ajustarse en minutos, horas y días. El límite máximo es de 9 días, 23 horas y 59 minutos (9:23:59). El valor mínimo aceptable es de 1 minuto. El temporizador interno continúa, incluso si se para la bomba mediante el botón on/off, tanque vacío o señal de parada, ver fig. 12.

Durante el funcionamiento "SG" contará siempre al revés de "IN" a cero. De esta forma se puede siempre leer el tiempo que queda hasta el siguiente lote. "IN" debe ser superior al tiempo necesario para realizar un lote. Si es inferior, no se tendrá en cuenta el siguiente lote.

Si hay un fallo del suministro eléctrico, la cantidad de dosificación ajustada, el tiempo "IN" y el tiempo "SG" restante quedan almacenados. Cuando se vuelve a conectar el suministro, la bomba arrancará con el tiempo "SG" que había cuando se produjo el fallo. De esta forma, el ciclo del temporizador continuará, pero ha sido retrasado por la duración del fallo del suministro.

Fig. 11
![Diagrama de temporizador](TM01_8942_0900)

Si se selecciona 4-20 mA ó 20-4 mA y la señal cae por debajo de 2 mA, la bomba indicará fallo. Esta situación ocurre si se interrumpe la conexión, por ejemplo si el cable está dañado.
Gama de ajustes, volumen ajustable por lote:
DME 60: 0.0017 to 31.7 gal (6.25 ml - 120 l)
DME 150: 0.0041 to 79.3 gal (15.6 ml - 300 l)
DME 375: 0.01 to 198.1 gal (39.1 ml - 750 l)
DME 940: 0.025 to 496.7 gal (97.9 ml - 1880 l)
Sólo se pueden seleccionar valores que correspon-
dan a carreras de dosificación completas
(de acuerdo con el factor de calibrado). El ajuste
mínimo depende del factor de calibrado. El ajuste
mínimo indicado arriba corresponde al valor de cali-
brado por defecto.

Ejemplo:
Si el factor de calibrado es 625 (= 6.25 ml/carrera),
el valor mínimo ajustable en modo de temporizador o
lote será 6.25 ml (= 1 carrera) -> el siguiente será
12.5 ml (= 2 carreras), etc.
Estos pasos seguirán hasta un valor que corres-
ponde a 100 carreras de dosificación. Por encima de
este valor la gama de ajustes tiene pasos estándar
al igual que en otros modos de funcionamiento.
Si se cambia el factor de calibrado después de ajus-
tar el modo de temporizador o lote, la bomba recal-
culará automáticamente un nuevo número de carre-
ras de dosificación por lote y cambiará el valor de la
pantalla al valor más cercano posible comparado
con el primer valor ajustado.
6.14 Batch
La bomba dosifica la cantidad ajustada en lotes a la capacidad máxima o a la capacidad máxima ajustada, ver sección 6.16 Limitación de la capacidad. La cantidad es dosificada cada vez que la bomba recibe un impulso externo.
Si la bomba recibe impulsos nuevos antes de finalizar el lote anterior, estos impulsos no se tendrán en cuenta.

Fig. 14
La gama de ajustes es la misma que para el Temporizador, ver sección 6.13 Temporizador.

6.15 Anticavitación
La bomba incorpora una función anticavitación. Al seleccionar esta función, la bomba amplia su carrera de aspiración, dando por resultado un cebado óptimo.
La función anticavitación se utiliza:
• al bombear líquidos de alta viscosidad,
• en el caso de una manguera de aspiración larga y
• en el caso de una gran altura de aspiración.
Dependiendo de las circunstancias, la velocidad del motor durante la carrera de aspiración puede reducirse en un 75 %, 50 % ó 25 % en comparación con la velocidad normal del motor durante la carrera de aspiración.
La capacidad máxima de la bomba se reduce cuando se selecciona la función anticavitación. Ver sección 4.1 Datos mecánicos.
6.16 Limitación de la capacidad
Esta función ofrece la posibilidad de reducir la capacidad máxima de la bomba (CAP. MAX.). Influye en aquellas funciones en las que la bomba normalmente funciona a la capacidad máxima.
Bajo condiciones de funcionamiento normales, la bomba no puede funcionar a una capacidad superior a la que indica la pantalla. Esto no se refiere al botón de capacidad máxima, ver sección 6.3 Cebado/purga de la bomba.

Fig. 17

6.17 Contadores
La bomba puede visualizar contadores no rearma-bles para:
- "CANTIDAD" Valor acumulado de la cantidad dosificada en litros o galones americanos.
- "CARRERAS" Número acumulado de carreras de dosificación.
- "HORAS" Número acumulado de horas de funcionamiento.
- "ENCENDIDO" Número acumulado de las veces que se ha conectado el suministro eléctrico.
6.18 Rearme

Al activar "AJUST.FAB." la bomba vuelve a los ajustes de fábrica.

Nota: El calibrado vuelve también al ajuste por defecto. Esto significa que se necesita un calibrado nuevo después de utilizar la función "AJUST.FAB.". Los ajustes por defecto son los ajustes de fábrica de bombas estándar. Seleccionar "AJUST.FAB." del menú "CONFIG.".

6.19 Volver

La función "VOLVER" permite volver desde cualquier nivel del menú a la pantalla de funcionamiento sin cambios después utilizar las funciones del menú.

6.20 Idioma

El texto de la pantalla aparecerá en uno de los siguientes idiomas:
- Español
- Inglés
- Alemán
- Francés
- Italiano
- Portugués
- Holandés
- Sueco
- Finlandés
- Danés
- Checo
- Eslovaco
- Polaco
- Ruso
6.21 Estructura de las entradas

La fig. 22 muestra todos los ajustes posibles. Las entradas de nivel, parada de dosificación y fugas del diafragma pueden cambiarse de la función NO (normalmente abierta) a NC (normalmente cerrada). Si se cambian, hay que puentealarlas durante funcionamiento normal. La entrada de control de dosificación puede cambiarse de "OFF" a "ON".

Se puede seleccionar uno de los siguientes tipos de señal para la entrada analógica:
- 4-20 mA (por defecto),
- 20-4 mA,
- 0-20 mA,
- 20-0 mA.

Ver también sección 6.12 Analógico.
6.22 Tanque vacío (alarma)
La función de alarma puede ajustarse a "REARM.AUT." o "REARM.MAN.". Se utiliza esta función cuando el sensor de nivel indica "VACIO". La alarma puede rearmarse automáticamente (REARM.AUT.) o a mano (REARM.MAN.). Para más información de otras funciones de la alarma, ver sección 6.6 Luces testigo y salida de alarma.

6.23 Unidades de medición
Se pueden seleccionar unidades métricas (litro/mililitro) o unidades americanas (galones/mililitro).

Unidades de medición métricas:
- **En los modos manual y analógico**, ajustar la cantidad a dosificar en litros por hora (l/h) o mililitros por hora (ml/h).
- **En el modo de impulso**, ajustar la cantidad a dosificar en ml/impulso. La capacidad actual está indicada en litros por hora (l/h) o mililitros por hora (ml/h).
- **Para el calibrado**, ajustar la cantidad a dosificar en ml por 100 carreras.
- **En los modos de temporizador y batch**, ajustar la cantidad a dosificar en litros (l) o mililitros (ml).
- En "CANTIDAD" del menú "CONTADOR", la cantidad dosificada está indicada en litros.

Unidades de medición americanas:
- **En los modos manual y analógico**, ajustar la cantidad a dosificar en galones por hora (gph).
- **En el modo de impulso**, ajustar la cantidad a dosificar en ml/impulso. La capacidad actual está indicada en galones por hora (gph).
- **Para el calibrado**, ajustar la cantidad a dosificar en ml por 100 carreras.
- **En los modos de temporizador y batch**, ajustar la cantidad a dosificar en galones (gal).
- En "CANTIDAD" del menú "CONTADOR", la cantidad dosificada está indicada en galones americanos (gal).

Nota: De acuerdo con lo establecido en la Ley Nacional 19511 de la República Argentina, queda totalmente prohibido la utilización de los equipos de dosificación mencionados en este catálogo / manual de operaciones, con cualquier unidad ajena a las incluidas en el SIMELA (Sistema Métrico Legal Argentino). Si bien las bombas dosificadoras marca Grundfos, modelos DME poseen la alternativa de indicar el caudal en Galones / Hora, por lo antes mencionado queda totalmente prohibido utilizar estos equipos con dichas unidades de medición dentro del territorio Argentino, sin importar el tipo de instalación o aplicación en la cual estén siendo utilizados, así como tampoco el personal que los estén operando. Dentro del territorio Argentino, los equipos deben ser utilizados en todos los casos, indicando el caudal en la unidad estándar para este país y aprobada por el SIMELA, siendo la misma y única habilitada la unidad de Litros / Hora. La misma se encuentra disponible en todos los equipos como unidad primaria.

Fig. 23
6.24 Control de dosificación

La bomba incorpora una entrada para el control de dosificación (ver esquema de conexiones en fig. 3).

La bomba se puede equipar con un monitor de dosificación capaz de detectar ciclos de dosificación ineficaces.

El monitor de dosificación está diseñado para monitorizar la dosificación de líquidos que pueden ocasionar acumulación de gases en el cabezal de dosificación, parando así el proceso de dosificación, incluso si la bomba todavía está funcionando.

Durante el proceso de dosificación, el monitor de dosificación da señales de impulsos a la entrada del controlador para que la bomba pueda comparar las carreras de dosificación realizadas (desde un sensor de dosificación interno) con las carreras físicas medias externamente (desde el monitor de dosificación). Si una carrera de dosificación externa no se mide a causa de la carrera de dosificación interna, esto se considera como un fallo que puede haberse producido por un tanque vacio o por gases en el cabezal de dosificación.

El monitor de dosificación debe conectarse a la entrada para controlar la dosificación. Esta entrada debe configurarse para controlar la dosificación.

Cuando la entrada está ajustada para controlar la dosificación y se ha conectado y ajustado un monitor de dosificación, la función de control de dosificación estará activa.
6.25 Bloqueo del panel de control
Se pueden bloquear los botones del panel de control para evitar un funcionamiento erróneo de la bomba. La función de bloqueo puede ajustarse a "ON" u "OFF". El ajuste por defecto es "OFF".
Debe introducirse un código PIN para cambiar de "OFF" a "ON". Cuando se selecciona "ON" por vez primera, "0000" aparecerá en la pantalla. Si ya se ha introducido un código, éste aparecerá al intentar cambiar a "ON". Se puede volver a introducir este código o cambiarlo.
Si no se ha introducido ningún código hay que ajustar un código de la misma manera que los valores "SG" e "IN" descritos en sección 6.13 Temporizador.
Si ya se ha introducido un código, los dígitos activos están intermitentes.
Si se intenta accionar la bomba en condición bloqueada "BLOQUEAD" aparecerá en la pantalla durante 2 segundos, seguido de "0000". Hay que introducir un código. Si no se ha empezado a introducir el código dentro de 10 segundos, aparecerá la pantalla de funcionamiento sin cambios.
Si se ha introducido un código erróneo, "BLOQUEAD" aparecerá en la pantalla durante 2 segundos, seguido de "0000". Hay que introducir un código nuevo. Si no se ha empezado a introducir el código dentro de 10 segundos, aparecerá la pantalla de funcionamiento sin cambios. Esta pantalla aparecerá también si la introducción del código correcto lleva más de 2 minutos.
Si se ha activado la función de bloqueo pero el panel de control no está bloqueado, éste se bloqueará automáticamente si no funciona durante 2 minutos.
La función de bloqueo puede también reactivarse seleccionando "ON" del menú "BLOQ.BOT".
El código introducido anteriormente aparecerá y debe ser introducido de nuevo pulsando el botón cuatro veces. El código puede también cambiarse.
El panel de control puede desbloquearse mediante el código seleccionado o el código de fábrica 2583.
Los siguientes botones y entradas siguen activos con el panel bloqueado:
• Cebado (botón).
• Botón on/off.
• Todas las entradas externas.

Activación de la función de bloqueo y bloqueo del panel de control:
1. Seleccionar "BLOQ.BOT" en el menú.
2. Seleccionar "ON" mediante los botones y y confirmar con .
3. Introducir o volver a introducir un código mediante los botones y .
La función de bloqueo está ahora activada y el panel de control está bloqueado.

Desbloqueo del panel de control (sin desactivar la función de bloqueo):
1. Pulsar una vez. "BLOQUEAD" aparece en la pantalla durante 2 segundos, seguido de "0000".
2. Introducir el código mediante los botones y .

Desactivación de la función de bloqueo:
1. Desbloquear el panel de control como descrito arriba.
2. Seleccionar "BLOQ.BOT" en el menú.
3. Seleccionar "OFF" mediante los botones y y confirmar con .
La función de bloqueo está ahora desactivada y el panel de control está desbloqueado.
* El panel de control puede siempre desbloquearse mediante el código 2583.
7. Puesta en marcha

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
</table>
| 1 | Antes de realizar la puesta en marcha, apretar de nuevo los tornillos de la cabeza dosificadora.
* Apriete los tornillos del cabezal dosificador en orden cruzado a torque 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 N·m (+ 0.5/- 0 N·m)) empleando una llave dinamométrica antes de la puesta en servicio y, de nuevo, tras 2-5 horas de funcionamiento. |
| 2 | Conectar las mangueras/tuberías:
* Conectar las mangueras/tuberías de aspiración y dosificación a la bomba.
* Conectar una manguera a la válvula de purga, si es necesaria, y llevar la manguera al tanque.
* No conecte una manguera a la abertura de drenaje. |
| 3 | Conectar los cables:
* Conectar los cables de control/nivel, si los hay, a la bomba, ver sección 5.6 Esquema de conexiones. |
| 4 | Conectar el suministro eléctrico:
* La pantalla está encendida.
* La luz testigo verde está intermitente (la bomba ha parado).
* Elegir idioma, si es necesario, ver sección 6.20 Idioma. |
| 5 | Elegir el modo de funcionamiento (ver sección 6.9 Modos de funcionamiento):
* Impulso.
* Analógico.
* Temporizador.
* Batch. |
| 6 | Arrancar la bomba:
* Pulsar el botón on/off para arrancar la bomba.
* La luz testigo verde está encendida permanentemente. |
| 7 | Cebado/purga:
* Pulsar el botón en el panel de control de la bomba y dejar que la bomba funcione sin contrapresión. Abrir la válvula de purga, si es necesario.
Al pulsar simultáneamente los botones y durante el cebado, puede ajustarse la bomba para funcionar durante unos segundos al rendimiento máximo. |
| 8 | Calibrado:
* Calibrar la bomba cuando ha sido cebada y está funcionando con la contrapresión correcta, ver sección 8. Calibrado |

Si la bomba no funciona satisfactoriamente, ver sección 10. Localización de fallos.
8. Calibrado

Es importante calibrar la bomba después de la instalación para asegurar que el valor correcto (ml/h o l/h) aparezca en la pantalla.

El calibrado puede realizarse en dos formas diferentes:

- **Calibrado directo.**
- La cantidad dosificada de 100 carreras se mide directamente, ver sección 8.1 **Calibrado directo.**
- **Calibrado por control.** Ver sección 8.2 **Calibrado por control.**
8.1 Calibrado directo

Antes del calibrado, comprobar:
- que la bomba está instalada con válvula de pie, válvula de inyección, etc. en el sistema existente.
- que la bomba funciona con la contrapresión de funcionamiento supuesta (ajustar la válvula de contrapresión, en caso necesario).
- que la bomba funciona con la correcta altura de aspiración.

Para realizar un calibrado directo proceder como sigue:

<table>
<thead>
<tr>
<th>Acción</th>
<th>Pantalla de la bomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cebar el cabezal de dosificación y la manguera de aspiración.</td>
<td></td>
</tr>
<tr>
<td>2. Parar la bomba. La luz verde está intermitente.</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Llenar un vaso graduado con líquido de dosificación, Q_1.
DME 60: aprox. 1.5 l
DME 150: aprox. 2.5 l
DME 375: aprox. 6 l
DME 940: aprox. 14 l | |
| 4. Leer y apuntar la cantidad Q_1. | |
| 5. Colocar la manguera de aspiración en el vaso graduado. | |
| 6. Ir al menú de calibrado, ver sección 6.8 Menú. | |
| 7. Pulsar el botón dos veces. | |
| 8. La bomba realiza 100 carreras de dosificación. | |
| 9. El valor de calibrado de fábrica aparece en la pantalla. | |
| 10. Quitar la manguera de aspiración del vaso graduado y leer Q_2. | |
| 11. Ajustar el valor de la pantalla a $Q_d = Q_1 - Q_2$. | |
| 12. Confirmar con el botón . | |
| 13. La bomba está ahora calibrada y vuelve a la pantalla de funcionamiento. | |
8.2 Calibrado por control

En el calibrado por control, el valor del calibrado se calcula leyendo el consumo de la sustancia química durante un periodo de tiempo específico y comparando éste con el número de carreras de dosificación realizadas durante el mismo periodo.

Este método de calibrado es muy exacto y especialmente adecuado para el calibrado por control después de largos periodos de funcionamiento o si no es posible hacer el calibrado directo. El calibrado puede, por ejemplo, realizarse al sustituir o llenar el tanque químico.

Para realizar un calibrado por control, proceder como sigue:

1. Pulsar el botón \(\text{parar} \) para parar la bomba.
2. Leer el contador y apuntar el número de carreras de dosificación, ver sección 6.17 Contadores.
3. Leer y apuntar la cantidad en el tanque químico.
4. Arrancar la bomba pulsando el botón \(\text{aparato} \) y dejar que funcione durante al menos 1 hora. Cuanto más tiempo funcione más exacto será el calibrado.
5. Pulsar el botón \(\text{parar} \) para parar la bomba.
6. Leer el contador y apuntar el número de carreras de dosificación, ver sección 6.17 Contadores.
7. Leer y apuntar la cantidad en el tanque químico.
8. Calcular la cantidad de dosificación en ml y el número de carreras de dosificación realizadas durante el periodo de funcionamiento.
9. Calcular el valor de calibrado como sigue: (cantidad de dosificación en ml/carreras de dosificación) x 100.
10. Ajustar el valor calculado en el menú de calibrado.

9. Servicio

Para asegurar una larga vida útil y una dosificación precisa, deben comprobarse periódicamente las piezas fungibles, como las membranas y las válvulas, en busca de signos de desgaste. Cuando sea necesario, sustituya las piezas deterioradas por piezas de recambio originales fabricadas con los materiales adecuados.

Si tiene cualquier pregunta, póngase en contacto con la empresa responsable del servicio técnico.

9.1 Mantenimiento periódico

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Tarea</th>
</tr>
</thead>
<tbody>
<tr>
<td>A diario</td>
<td>Compruebe si la abertura de drenaje presenta fugas de líquido (fig. 1) y si está obstruida o sucia. Si es así, siga las instrucciones descritas en la sección 9.4 Rotura de la membrana.</td>
</tr>
<tr>
<td></td>
<td>Compruebe si el cabezal dosificador o las válvulas presentan fugas de líquido. Si la bomba ha funcionado con los tornillos de la cabeza dosificadora mal apretados o dañados, desconectela inmediatamente del suministro eléctrico. Siga las instrucciones descritas en la sección 9.5 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados. Si es necesario, apriete las tuercas de las válvulas y las tapas, o lleve a cabo una inspección (consulte la sección 9.3 Ejecución de una inspección).</td>
</tr>
<tr>
<td>Semanalmente</td>
<td>Limpie todas las superficies de la bomba empleando un paño seco y limpio.</td>
</tr>
<tr>
<td>Cada 3 meses</td>
<td>Compruebe los tornillos del cabezal dosificador. Si es necesario, apriete los tornillos del cabezal dosificadora a torque 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 N·m (+ 0.5/- 0 N·m)) empleando una llave dinamométrica. Sustituya inmediatamente los tornillos dañados.</td>
</tr>
<tr>
<td>Cada 2 años u 8000 horas de funcionamiento*</td>
<td>Sustituya la membrana y las válvulas (consulte la sección 9.3 Ejecución de una inspección).</td>
</tr>
</tbody>
</table>

* Si el líquido bombeado incrementa el desgaste, reduzca los intervalos de mantenimiento.

9.2 Limpieza

Si es necesario, limpie todas las superficies de la bomba empleando un paño seco y limpio.
9.3 Ejecución de una inspección

Las operaciones de mantenimiento deben llevarse a cabo empleando exclusivamente piezas de repuesto y accesorios Grundfos. El uso de piezas de repuesto y accesorios no originales anula e invalida cualquier responsabilidad derivada de los daños ocasionados. Si desea obtener más información acerca de la ejecución de operaciones de mantenimiento, consulte el catálogo de kits de servicio o nuestro sitio web (www.grundfos.com).

Aviso
¡Riesgo de quemaduras químicas!
¡Respete las precauciones descritas en las fichas de seguridad correspondientes durante la dosificación de medios peligrosos!
¡Use prendas protectoras (guantes y gafas de protección) cuando trabaje con el cabezal dosificador, las conexiones o las tuberías!
Evite las fugas de productos químicos en la bomba. ¡Recoja y elimine correctamente todos los productos químicos!

Antes de llevar a cabo cualquier operación relacionada con la bomba, asegúrese de que esta se encuentre desconectada del suministro eléctrico. ¡El sistema no debe contener presión!

9.3.1 Despiece del cabezal dosificador

1. Asegúrese de que el sistema no contenga presión.
2. Vacíe el cabezal dosificador antes de llevar a cabo el mantenimiento y límpielo si es necesario.
3. Lleve a cabo los pasos que correspondan para garantizar que el líquido de retorno se recoja con seguridad.
4. Desmonte las mangueras de aspiración, presión y purga.
5. Desenrosque la válvula de purga.
6. Desmonte las válvulas de los lados de aspiración y descarga (4 y 6).
7. Afloje los tornillos (7) del cabezal dosificador (5).
8. Retire los tornillos y, si el cabezal dosificador es de PP o PVDF, también la placa delantera (8).
9. Retire el cabezal dosificador (5).
10. Desenrosque la membrana (3) girándola en sentido contrario a las agujas del reloj y quítela.
11. Asegúrese de que la abertura de drenaje (9) no se encuentre obstruida ni sucia. Límpiela si es necesario.
12. Compruebe si la membrana de seguridad (1) está deteriorada o dañada.

Si nada indica que el líquido dosificado puede haber penetrado en la carcasa de la bomba y la membrana de seguridad no está deteriorada o dañada, proceda según lo descrito en la sección 9.3.3 Montaje de la membrana y las válvulas. De lo contrario, proceda según lo descrito en la sección 9.4.1 Líquido dosificado en la carcasa de la bomba.

9.3.2 Desmontaje de la membrana y las válvulas

Antes del desmontaje, lea íntegramente las secciones 9.4 Rotura de la membrana y 9.5 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados.

Aviso
¡La penetración del líquido dosificado en la carcasa de la bomba representa un peligro de explosión!

Si es posible que la membrana esté dañada o si la bomba ha funcionado con los tornillos de la cabeza dosificadora mal apretados o dañados, no la conecte al suministro eléctrico.

Esta sección hace referencia a la fig. 27.

1. Enrosque la nueva membrana (3) girándola en sentido de las agujas del reloj.
2. Coloque el cabezal dosificador (5).

Fig. 27 Cabezal dosificador, despiece
(sin válvula de purga)

<table>
<thead>
<tr>
<th>1</th>
<th>Membrana de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Brida</td>
</tr>
<tr>
<td>3</td>
<td>Membrana</td>
</tr>
<tr>
<td>4</td>
<td>Válvula del lado de descarga</td>
</tr>
<tr>
<td>5</td>
<td>Cabezal dosificador</td>
</tr>
<tr>
<td>6</td>
<td>Válvula del lado de aspiración</td>
</tr>
<tr>
<td>7</td>
<td>Tornillos</td>
</tr>
<tr>
<td>8</td>
<td>Placa delantera del cabezal dosificador (sólo PP y PVDF)</td>
</tr>
<tr>
<td>9</td>
<td>Abertura de drenaje</td>
</tr>
</tbody>
</table>

¡Respete también lo descrito en las secciones 5. Instalación, 6.3 Cebado/purga de la bomba y 7. Puesta en marcha!

La bomba sólo se debe volver a montar si nada indica que el líquido dosificado puede haber penetrado en la carcasa de la bomba. De lo contrario, proceda según lo descrito en la sección 9.4.1 Líquido dosificado en la carcasa de la bomba.

Esta sección hace referencia a la fig. 27.
3. Coloque los tornillos (7) y, si el cabezal dosificador es de PP o PVDF, también la placa delantera (8); apriete los tornillos en orden cruzado empleando una llave dinamométrica.
 - Par de apriete: torque 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 N·m (+ 0.5/- 0 N·m).
4. Instale las válvulas nuevas (4 y 6).
 - ¡Respete el sentido del flujo, indicado mediante una flecha en la válvula!
5. Instale la válvula de purga.
6. Conecte las mangueras de aspiración, presión y purga.

 Apriete los tornillos del cabezal dosificador en orden cruzado a torque 4.06 ft·lb (+ 0.37/- 0 ft·lb) (5.5 N·m (+ 0.5/- 0 N·m)) empleando una llave dinamométrica antes de la puesta en servicio y, de nuevo, tras 2-5 horas de funcionamiento.

7. Purgue la bomba dosificadora (consulte la sección 6.3 Cebado/purga de la bomba).

9.4 Rotura de la membrana

Si la membrana presenta fugas o se rompe, el líquido dosificado puede escapar a través de la abertura de drenaje (fig. 27, pos. 9), situada en la brida del cabezal dosificador.

En caso de rotura de la membrana, la membrana de seguridad (fig. 27, pos. 1) protegerá la carcasa de la bomba frente a la penetración del líquido dosificado. La dosificación de líquidos susceptibles de cristalizarse puede dar lugar a la obstrucción de la abertura de drenaje por cristalización. Si la bomba no se detiene inmediatamente, puede acumularse presión entre la membrana (fig. 27, pos. 3) y la membrana de seguridad de la brida (fig. 27, pos. 1). La presión puede empujar el líquido dosificado a través de la membrana de seguridad y hacer que penetre en la carcasa de la bomba. La mayoría de los líquidos dosificados no presentan un peligro al penetrar en la carcasa de la bomba. Ciertos líquidos, no obstante, pueden dar lugar a reacciones químicas al entrar en contacto con las piezas internas de la bomba. En el peor de los casos, tales reacciones pueden generar gases explosivos en la carcasa.

Aviso

¡La penetración del líquido dosificado en la carcasa de la bomba representa un peligro de explosión! El funcionamiento con una membrana dañada puede dar lugar a la penetración del líquido dosificado en la carcasa de la bomba.

¡Si la membrana se rompe, separe inmediatamente la bomba del punto de suministro eléctrico!

¡Asegúrese de que la bomba no pueda volver a ponerse en marcha por accidente!

Desmonte el cabezal dosificador sin conectar la bomba al suministro eléctrico y asegúrese de que el líquido dosificado no haya penetrado en la carcasa de la bomba. Proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.

Respete lo descrito a continuación para evitar todo peligro resultante de una rotura de la membrana:

- Lleve a cabo operaciones de mantenimiento periódico. Consulte la sección 9.1 Mantenimiento periódico.
- No haga funcionar la bomba con la abertura de drenaje obstruida o sucia.
 - ¡Si la abertura de drenaje está obstruida o sucia, proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.
- No conecte una manguera a la abertura de drenaje. Si lo hace, no podrá determinar si existe un escape del líquido dosificado.
- Tome las precauciones adecuadas para evitar daños personales y materiales resultantes de un escape del líquido dosificado.
- No haga funcionar la bomba con los tornillos del cabezal dosificador dañados o sueltos.

9.4.1 Líquido dosificado en la carcasa de la bomba

Aviso

¡Peligro de explosión!

¡Separe la bomba inmediatamente del punto de suministro eléctrico!

¡Asegúrese de que la bomba no pueda volver a ponerse en marcha por accidente!

Si penetra líquido dosificado en la carcasa de la bomba o si la membrana de seguridad está dañada o deteriorada:

- Envíe la bomba a Grundfos para su reparación siguiendo las instrucciones descritas en la sección 9.6 Reparaciones.
- Si la reparación no es una solución económicamente razonable, elimine la bomba de acuerdo con la información incluida en la sección 11. Eliminación.
9.5 Funcionamiento con los tornillos de la cabeza dosificadora mal apretados

Aviso
¡La penetración del líquido dosificado en la carcasa de la bomba representa un peligro de explosión!
El funcionamiento con los tornillos de la cabeza dosificadora mal apretados o dañados puede dar lugar a la penetración del líquido dosificado en la carcasa de la bomba.
Si la bomba ha funcionado con los tornillos de la cabeza dosificadora mal apretados o dañados, desconéctela inmediatamente del suministro eléctrico.
¡Asegúrese de que la bomba no pueda volver a ponerse en marcha por accidente!
Desmonte el cabezal dosificador sin conectar la bomba al suministro eléctrico y asegúrese de que el líquido dosificado no haya penetrado en la carcasa de la bomba. Proceda según lo descrito en la sección 9.3.2 Desmontaje de la membrana y las válvulas.

9.6 Reparaciones

Aviso
¡Únicamente el personal autorizado por Grundfos puede abrir la caja de la bomba!
Las reparaciones solo deben realizarlas personal autorizado y cualificado.
¡Apague la bomba y desconéctela de la de red eléctrica antes de realizar reparaciones y tareas de mantenimiento!

Nota
La sustitución del cable eléctrico debe ser realizada por un Servicio Técnico Oficial Grundfos.

Después de consultar con Grundfos, por favor envíe la bomba, junto con la declaración de seguridad cumplimentada por un especialista, a Grundfos. La declaración de seguridad se encuentra al final de estas instrucciones. Debe copiarse, completarse y adjuntarse a la bomba.

¡La bomba debe limpiarse antes del envío!
¡Si es posible que el líquido dosificado haya penetrado en la carcasa de la bomba, indíquelo claramente en la declaración de seguridad! Respete lo descrito en la sección 9.4 Rotura de la membrana.

Si no se cumplen estos requisitos, Grundfos puede negarse a aceptar la entrega de la misma. El remitente se hará cargo de los costes de envío.
10. Localización de fallos

<table>
<thead>
<tr>
<th>Fallo</th>
<th>Causa</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>La dosificación ha parado o es demasiado baja.</td>
<td>Válvulas con fugas o bloqueadas.</td>
<td>Comprobar y limpiar las válvulas.</td>
</tr>
<tr>
<td>Válvulas instaladas incorrectamente.</td>
<td></td>
<td>Quitar y montar las válvulas. Comprobar que la flecha en el alojamiento de válvula señala en el sentido del flujo. Comprobar que todas las juntas tóricas están colocadas correctamente.</td>
</tr>
<tr>
<td>Válvula de aspiración o tubería/manguera de aspiración con fugas o bloqueada.</td>
<td></td>
<td>Limpiar y sellar la tubería de tubería/manguera de aspiración.</td>
</tr>
<tr>
<td>Demasiada altura de aspiración.</td>
<td></td>
<td>Instalar la bomba en una posición inferior.</td>
</tr>
<tr>
<td>Viscosidad demasiado alta.</td>
<td></td>
<td>Seleccionar la función anticavitation, ver sección 6.15 Anticavitación.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instalar una tubería/manguera de mayor sección.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montar válvulas de muelle.</td>
</tr>
<tr>
<td>La bomba dosifica irregularmente.</td>
<td>Válvulas con fugas o bloqueadas.</td>
<td>Comprobar y limpiar las válvulas.</td>
</tr>
<tr>
<td>Fugas por el orificio de purga.</td>
<td>Diafragma defectuoso.</td>
<td>Instalar un nuevo diafragma.</td>
</tr>
<tr>
<td>Fallos frecuentes del diafragma.</td>
<td>Diafragma no sujeto adecuadamente.</td>
<td>Instalar un nuevo diafragma y comprobar que se sujeta adecuadamente.</td>
</tr>
<tr>
<td></td>
<td>Contraresión demasiado alta (medida en la conexión de descarga de la bomba).</td>
<td>Comprobar el sistema. Comprobar la válvula de inyección.</td>
</tr>
<tr>
<td></td>
<td>Sedimento en el cabezal de dosificación.</td>
<td>Limpiar/enjuagar el cabezal de dosificación.</td>
</tr>
</tbody>
</table>

11. Eliminación

Este producto y todas sus partes asociadas deben eliminarse de una forma adecuada con el medio ambiente. Utilice los servicios adecuados de recolección de desechos. Si no existe una instalación o se niega a aceptar los materiales utilizados en el producto, éste puede ser enviado al centro Grundfos o centro de servicio más cercano.

Nos reservamos el derecho a modificaciones sin previo aviso.
SOMMAIRE

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GARANTIE LIMITÉE</td>
<td>72</td>
</tr>
<tr>
<td>2.</td>
<td>Consignes de sécurité</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Symboles utilisés dans cette notice</td>
<td>72</td>
</tr>
<tr>
<td>2.2</td>
<td>Qualification et formation du personnel</td>
<td>72</td>
</tr>
<tr>
<td>2.3</td>
<td>Consignes de sécurité pour l'exploitant/l'utilisateur</td>
<td>73</td>
</tr>
<tr>
<td>2.4</td>
<td>Sécurité de l'installation en cas de défaillance de la pompe doseuse</td>
<td>73</td>
</tr>
<tr>
<td>2.5</td>
<td>Produits chimiques de dosage</td>
<td>73</td>
</tr>
<tr>
<td>2.6</td>
<td>Rupture de la membrane</td>
<td>74</td>
</tr>
<tr>
<td>2.7</td>
<td>Fonctionnement avec des vis de la tête de dosage mal serrées</td>
<td>74</td>
</tr>
<tr>
<td>3.</td>
<td>Généralités</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Applications</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Méthodes de fonctionnement inappropriées</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Clé typologique</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Caractéristiques techniques</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Caractéristiques mécaniques</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Caractéristiques électriques</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Caractéristiques d’entrée/sortie</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Dimensions</td>
<td>78</td>
</tr>
<tr>
<td>5.</td>
<td>Installation</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Réglementation de sécurité</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Environnement de l’installation</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Installation de la pompe</td>
<td>78</td>
</tr>
<tr>
<td>5.4</td>
<td>Exemple d’installation</td>
<td>79</td>
</tr>
<tr>
<td>5.5</td>
<td>Raccordement électrique</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Schéma de raccordement</td>
<td>80</td>
</tr>
<tr>
<td>6.</td>
<td>Fonctions</td>
<td>82</td>
</tr>
<tr>
<td>6.1</td>
<td>Panneau de commande</td>
<td>82</td>
</tr>
<tr>
<td>6.2</td>
<td>Mise en marche/arrêt de la pompe</td>
<td>83</td>
</tr>
<tr>
<td>6.3</td>
<td>Amorçage/purge de la pompe</td>
<td>83</td>
</tr>
<tr>
<td>6.4</td>
<td>Commande de niveau</td>
<td>83</td>
</tr>
<tr>
<td>6.5</td>
<td>Capteur de fuite de la membrane</td>
<td>83</td>
</tr>
<tr>
<td>6.6</td>
<td>Voyants lumineux et sortie d’alarme</td>
<td>84</td>
</tr>
<tr>
<td>6.7</td>
<td>Communication par fieldbus</td>
<td>85</td>
</tr>
<tr>
<td>6.8</td>
<td>Menu</td>
<td>86</td>
</tr>
<tr>
<td>6.9</td>
<td>Modes de fonctionnement</td>
<td>87</td>
</tr>
<tr>
<td>6.10</td>
<td>Manuel</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>Pulsation</td>
<td>87</td>
</tr>
<tr>
<td>6.12</td>
<td>Analogique</td>
<td>88</td>
</tr>
<tr>
<td>6.13</td>
<td>Temporisation</td>
<td>88</td>
</tr>
<tr>
<td>6.14</td>
<td>Quantité par lots</td>
<td>90</td>
</tr>
<tr>
<td>6.15</td>
<td>Anti-cavitation</td>
<td>90</td>
</tr>
<tr>
<td>6.16</td>
<td>Limitation de capacité</td>
<td>91</td>
</tr>
<tr>
<td>6.17</td>
<td>Compteurs</td>
<td>91</td>
</tr>
<tr>
<td>6.18</td>
<td>Remise à l’état initial</td>
<td>92</td>
</tr>
<tr>
<td>6.19</td>
<td>Retour</td>
<td>92</td>
</tr>
<tr>
<td>6.20</td>
<td>Langue</td>
<td>92</td>
</tr>
<tr>
<td>6.21</td>
<td>Configuration d’entrée</td>
<td>93</td>
</tr>
<tr>
<td>6.22</td>
<td>Réservoir vide (alarme)</td>
<td>94</td>
</tr>
<tr>
<td>6.23</td>
<td>Unités de mesure</td>
<td>94</td>
</tr>
<tr>
<td>6.24</td>
<td>Surveillance du dosage</td>
<td>95</td>
</tr>
<tr>
<td>6.25</td>
<td>Verrouillage du panneau de commande</td>
<td>96</td>
</tr>
<tr>
<td>7.</td>
<td>Mise en marche</td>
<td>97</td>
</tr>
<tr>
<td>8.</td>
<td>Calibrage</td>
<td>98</td>
</tr>
<tr>
<td>8.1</td>
<td>Calibrage direct</td>
<td>99</td>
</tr>
<tr>
<td>8.2</td>
<td>Calibrage de contrôle</td>
<td>100</td>
</tr>
<tr>
<td>9.</td>
<td>Entretien</td>
<td>100</td>
</tr>
<tr>
<td>9.1</td>
<td>Maintenance régulière</td>
<td>100</td>
</tr>
<tr>
<td>9.2</td>
<td>Nettoyage</td>
<td>100</td>
</tr>
<tr>
<td>9.3</td>
<td>Procéder à la maintenance</td>
<td>101</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Aperçu de la tête de dosage</td>
<td>101</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Démontage des vannes et membranes</td>
<td>101</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Montage des vannes et membranes</td>
<td>102</td>
</tr>
<tr>
<td>9.4</td>
<td>Rupture de la membrane</td>
<td>102</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Liquide de dosage dans le corps de la pompe</td>
<td>103</td>
</tr>
<tr>
<td>9.5</td>
<td>Fonctionnement avec des vis de la tête de dosage mal serrées</td>
<td>103</td>
</tr>
<tr>
<td>9.6</td>
<td>Réparations</td>
<td>103</td>
</tr>
<tr>
<td>10.</td>
<td>Tableau de recherche des pannes</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Mise au rebut</td>
<td></td>
</tr>
</tbody>
</table>

Avertissement

Avant de commencer l’installation, étudier avec attention la présente notice d’installation et de fonctionnement. L’installation et le fonctionnement doivent être conformes aux réglementations locales et faire l’objet d’une bonne utilisation.
1. GARANTIE LIMITÉE

Les produits fabriqués par GRUNDFOS PUMPS CORPORATION (Grundfos) sont couverts par une garantie à l'utilisateur initial à l'effet qu'ils sont exempts de vices attribuables aux matériaux et à la fabrication pour une période de 24 mois après la date d'installation, mais sans excéder une période de 30 mois après la date de fabrication. Selon les termes de cette garantie, la responsabilité de Grundfos se limitera à réparer ou à remplacer sans frais, à la discrétion de Grundfos et FAB de l'usine de Grundfos ou d'un poste de service autorisé, tout produit provenant de l'usine de Grundfos. Grundfos ne sera pas responsable des frais d'enlèvement, d'installation, de transport, ou de tous les autres frais pouvant être encourus dans le cadre d'une demande d'indemnité concernant la garantie. Les produits vendus, mais qui ne sont pas fabriqués par Grundfos, sont couverts par la garantie offerte par les fabricants de ces produits, et ils ne sont pas couverts par la garantie de Grundfos. Grundfos ne sera pas responsable de la détérioration des produits ou des produits endommagés dans les cas suivants : conditions d'utilisation anormales, accidents, abus, mauvais usage, modification ou réparation non autorisée, ou lorsque le produit n'a pas été installé conformément aux instructions écrites de Grundfos concernant l'installation et l'exploitation.

Pour obtenir un service selon les termes de cette garantie, vous devez retourner le produit défectueux au distributeur ou au fournisseur de produits Grundfos qui vous a vendu le produit, incluant la preuve d'achat et la date d'installation, la date de la défaillance, et les informations concernant l'installation. Sauf disposition contraire, le distributeur ou le fournisseur contactera Grundfos ou un poste de service pour obtenir les instructions. Tout produit défectueux doit être retourné "fret payé à l'avance" à Grundfos ou à un poste de service. Les documents décrivant la demande d'indemnité aux termes de la garantie et/ou une autorisation de retour de marchandise doivent être inclus, si exigé.

GRUNDFOS NE SERA PAS RESPONSABLE DES DOMMAGES INDIRECTS OU CONSÉCUTIFS, DES PERDUES, OU DES FRAIS DÉCOULANT DE L'INSTALLATION, L'UTILISATION, OU DE TOUTE AUTRE CAUSE. IL N'EXISTE AUCUNE GARANTIE EXPRESSE OU IMPLICITE, INCLUANT LA QUALITÉ MARCHANDE OU L'ADAPTATION À UNE FIN PARTICULIÈRE, QUI OUTREPASSE LES GARANTIES DÉCRrites OU RÉFÉRENcÉES CI-DESSUS.

Certaines juridictions ne permettent pas l'exclusion ou la limitation des dommages indirects ou consécutifs, et certaines juridictions ne permettent pas de limiter la durée des garanties implicites. Il est donc possible que les limitations ou que les exclusions mentionnées précédemment ne s'appliquent pas à vous. Cette garantie vous accorde des droits légaux spécifiques, et vous pouvez également avoir d'autres droits qui varient d'une juridiction à l'autre.

2. Consignes de securite

Cette notice d'installation et de fonctionnement contient des instructions générales à observer lors de l'installation, du fonctionnement et de la maintenance de la pompe. Elle doit donc être lue par le responsable des opérations et par l'opérateur qualifié avant son installation et sa mise en service, et doit être disponible sur le site d'installation à tout moment.

2.1 Symboles utilisés dans cette notice

Avertissement

Si ces consignes de sécurité ne sont pas observées, il peut en résulter des dommages corporels.

Précaution

Le non-respect de ces consignes de sécurité peut entraîner des dysfonctionnements ou endommager l'équipement.

Nota

Remarques ou instructions facilitant le travail et assurant un fonctionnement sécurisé.

2.2 Qualification et formation du personnel

Le personnel responsable de l'installation, du fonctionnement et de la maintenance doit être qualifié pour l'exécution de ces travaux. Les domaines de responsabilité, les niveaux de compétence et la surveillance du personnel doivent être définis avec précision par l'exploitant. Le personnel doit être correctement formé, si nécessaire.

Risques en cas de non-respect des consignes de sécurité

Le non-respect des consignes de sécurité peut avoir de graves conséquences sur le personnel, l'environnement et la pompe, et peut entraîner la perte du droit de réclamation pour tout dommage. Cela peut entraîner par exemple les risques suivants :

- Accidents corporels causés par une exposition aux influences électriques, mécaniques et chimiques.
- Détérioration de l'environnement et accidents corporels par fuite de substances dangereuses.
2.3 Consignes de sécurité pour l'exploitant/l'utilisateur
Les présentes consignes de sécurité, les réglementations nationales pour la prévention des accidents ainsi que les règles de sécurité concernant les interventions internes et le fonctionnement doivent être observées.
Observer toute indication jointe à la pompe.
Les fuites de liquides dangereux doivent être évacuées de façon à ne créer aucune mise en danger des personnes et de l'environnement.
Eviter tout dommage causé par énergie électrique, consulter les réglementations de votre fournisseur d'électricité local.

Avant toute intervention sur la pompe, celle-ci doit être hors service et hors tension. Le système ne doit pas être sous pression !

Nota
La prise secteur sépare la pompe du secteur.

Utiliser uniquement des accessoires et pièces détachées d'origine. L'utilisation d'autres pièces peut annuler toute garantie pour les conséquences qui en résulteraient.

2.4 Sécurité de l'installation en cas de défaillance de la pompe doseuse
La pompe doseuse est conçue grâce aux meilleures technologies actuelles et soigneusement testée.
En cas de panne, la sécurité de l'ensemble du système doit être assurée. Prévoir à cet effet les fonctions de commande et de surveillance nécessaires.

S'assurer que tout produit chimique sortant de la pompe ou d'une tuyauterie endommagée n'entraîne aucune détérioration des pièces du système.
Il est recommandé d'installer des solutions de détection de fuite et des bacs récepteurs.

Précaution
Un tuyau de désaération, passant dans un conteneur, par exemple un bac collecteur, doit être raccordé à la vanne de désaération.

Précaution
Le produit à doser doit être liquide ! Respecter les points de congélation et d'ébullition du produit de dosage !

Précaution
La résistance des pièces en contact avec le produit dépend du liquide de dosage, comme la vanne de dosage, le clapet à billes, les joints statiques et la tuyauterie dépendent du produit de dosage, de la température de celui-ci et de la pression de service.
S'assurer que les pièces en contact avec le produit de dosage résistent à celui-ci sous conditions de fonctionnement, consulter la documentation technique !

Pour toutes questions relatives à la résistance matérielle et au type de pompes adapté aux produits de dosage spécifiques, contacter Grundfos.
2.6 Rupture de la membrane
En cas de fuite ou de rupture de la membrane, le liquide de dosage s’échappe de l’orifice de purge (fig. 1) sur la tête de dosage. Consulter le paragraphe 9.4 Rupture de la membrane.

Avertissement
Il existe un risque d'explosion si le liquide de dosage pénètre à l'intérieur du corps de la pompe !
Tout fonctionnement avec une membrane endommagée peut faire pénétrer du liquide de dosage à l'intérieur du corps de la pompe.
En cas de rupture de la membrane, mettre immédiatement la pompe hors tension !
S’assurer qu'elle ne puisse pas être réenclenchée accidentellement !
Démonter la tête de dosage sans remettre la pompe sous tension et vérifier que le liquide de dosage n’est pas entré dans le corps de la pompe. Suivre les instructions du paragraphe 9.3.2 Démontage des vannes et membranes.

Pour éviter tout danger suite à une rupture de la membrane, respecter les instructions suivantes :

- Procéder à une maintenance régulière. Voir paragraphe 9.1 Maintenance régulière.
- Ne jamais faire fonctionner la pompe si l'orifice de purge est obstrué ou sale.
 - Si l'orifice de purge est obstrué ou sale, suivre les instructions du paragraphe 9.3.2 Démontage des vannes et membranes.
- Ne jamais raccorder de flexible à l'orifice de purge. Lorsqu'un flexible est raccordé à l'orifice de purge, il est impossible de savoir si du liquide de dosage fuit.
- Prendre les précautions qui s'imposent pour éviter les blessures et ne pas endommager le matériel en cas de fuite de liquide de dosage.
- Ne jamais faire fonctionner la pompe si les vis de la tête de dosage sont endommagées ou mal serrées.

2.7 Fonctionnement avec des vis de la tête de dosage mal serrées

Avertissement
Il existe un risque d'explosion si le liquide de dosage pénètre à l'intérieur du corps de la pompe !
Tout fonctionnement avec des vis de la tête de dosage endommagées ou mal serrées peut faire pénétrer du liquide de dosage à l'intérieur du corps de la pompe.
Si la pompe a été utilisée avec des vis de la tête de dosage endommagées ou mal serrées, mettre immédiatement la pompe hors tension !
S'assurer qu'elle ne puisse pas être réenclenchée accidentellement !
Démonter la tête de dosage sans remettre la pompe sous tension et vérifier que le liquide de dosage n’est pas entré dans le corps de la pompe. Suivre les instructions du paragraphe 9.3.2 Démontage des vannes et membranes.
3. Généralités
La pompe de dosage Grundfos DME est une pompe à membrane auto-amorçante.
Elle se compose :
• d’un **boîtier** contenant l’unité d’entraînement et l’électronique,
• d’une **tête de dosage** avec socle, membrane, soupapes, raccords et soupape de purge,
• d’un **panneau de commande** comportant un afficheur et des touches. Le panneau de commande est monté soit en façade, soit sur le côté du boîtier.

Le moteur est commandé de telle manière que le dosage reste aussi égal et constant que possible, indépendamment de la tâche imposée à la pompe. Ceci s’opère de la façon suivante :
La vitesse de la course d’aspiration est maintenue constante et la course est maintenue relativement faible, ceci indépendamment de la capacité.
Contrairement aux pompes conventionnelles, qui génèrent la course de dosage comme une courte pulsation, la durée de la course de dosage sera aussi longue que possible. Un dosage uniforme sans valeurs de pointes est donc garanti. Comme la pompe procède toujours au dosage sur la totalité de sa longueur de course, elle garantit une constance de la haute précision et de la capacité, qui peut être totalement modifiée dans un rapport de 1:800.

La pompe fait appel à un afficheur LCD et à un panneau de commande facile à utiliser pour donner accès à ses diverses fonctions.

3.1 Applications
La pompe peut être utilisée avec des produits liquides, non abrasifs, non inflammables et non combustibles conformément aux consignes figurant dans les présentes instructions d’installation et de fonctionnement.

Domaines d’application (entre autres)
• Traitement de l’eau potable
• Traitement des eaux usées
• Traitement de l’eau de refroidissement
• Systèmes de lavage
• Traitement de l’eau des process industriels
• Industrie chimique.

3.2 Méthodes de fonctionnement inappropriées
La fiabilité de fonctionnement de la pompe n’est garantie que dans le cas d’une utilisation conforme au paragraphe 3.1 Applications.

Avertissement
Toute autre utilisation des pompes, dans des conditions ambiantes et opérationnelles non homologuées, est considérée comme incorrecte et non autorisée. Grundfos décline toute responsabilité pour tout dommage résultant d’une utilisation non conforme.

Avertissement
La pompe doit être équipée d’un dispositif de détection des fuites lorsqu’elle est utilisée pour des produits cristallisants.

Avertissement
La pompe N’EST PAS approuvée pour fonctionner dans des zones potentiellement explosives !

Avertissement
Un écran solaire est nécessaire pour une installation en extérieur !
3.3 Clé typologique

(À ne pas utiliser pour configurer la pompe)

<table>
<thead>
<tr>
<th>Code</th>
<th>Exemple</th>
<th>DME</th>
<th>60 - 10</th>
<th>AR</th>
<th>PP/ E</th>
<th>C</th>
<th>F</th>
<th>2</th>
<th>1</th>
<th>A3/A3</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gamme</td>
<td></td>
</tr>
<tr>
<td>Capacité maximale [l/h] :</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td></td>
</tr>
<tr>
<td>940</td>
<td></td>
</tr>
<tr>
<td>Pression maximale [bar] :</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Variante de commande :</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Standard + Profibus</td>
<td></td>
</tr>
<tr>
<td>Matériau de la tête de dosage :</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylène</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>PTFE</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 acier inoxydable</td>
<td></td>
</tr>
<tr>
<td>Matériau du joint :</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
<td></td>
</tr>
<tr>
<td>Matériau des billes de soupapes :</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Céramique</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Verre</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>316 acier inoxydable</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>PTFE (seulement 375 et 940)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Hastelloy</td>
<td></td>
</tr>
<tr>
<td>Panneau de commande :</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Monté en façade de pompe</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Monté sur le côté pompe</td>
<td></td>
</tr>
<tr>
<td>Tension :</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 x 120 V, 60 Hz</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 x 100-240 V, 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Soupapes :</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Soupape standard</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Soupape à ressort</td>
<td></td>
</tr>
<tr>
<td>Raccordement, aspiration/refoulement :</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3/4" FNPT</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>1 1/4" FNPT</td>
<td></td>
</tr>
<tr>
<td>Fiche secteur :</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>
4. Caractéristiques techniques

4.1 Caractéristiques mécaniques

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacité maximale*1 [gph (l/h)]</td>
<td>15,8 (60)</td>
<td>39,6 (150)</td>
<td>99,2 (376)</td>
<td>248,0 (940)</td>
</tr>
<tr>
<td>Capacité maximale avec anti-cavitation 75 %*1 [gph (l/h)]</td>
<td>11,9 (45)</td>
<td>29,6 (112)</td>
<td>74,2 (282)</td>
<td>186,0 (705)</td>
</tr>
<tr>
<td>Capacité maximale avec anti-cavitation 50 %*1 [gph (l/h)]</td>
<td>8,8 (33,4)</td>
<td>22,0 (83,5)</td>
<td>55,4 (210)</td>
<td>138,5 (525)</td>
</tr>
<tr>
<td>Capacité maximale avec anti-cavitation 25 %*1 [gph (l/h)]</td>
<td>4,2 (16,1)</td>
<td>10,7 (40,4)</td>
<td>26,6 (101)</td>
<td>66,5 (252)</td>
</tr>
<tr>
<td>Pression maximale [psi (bars)]</td>
<td>145 (10)</td>
<td>58 (4)</td>
<td>145 (10)</td>
<td>58 (4)</td>
</tr>
<tr>
<td>Nombre de courses maximales [courses/min.]</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur maximale d’aspiration lors du fonctionnement [ft (m)]</td>
<td>19,6 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur maximale d’aspiration lors de l’amorçage avec soupapes humides [ft (m)]</td>
<td>4,9 (1,5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosité maximale avec soupapes à ressort*2 [mPa s]</td>
<td>3000 [mPa s] à 50 % de la capacité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosité maximale sans soupapes à ressort*2 [mPa s]</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamètre de la membrane [mm]</td>
<td>79</td>
<td>106</td>
<td>124</td>
<td>173</td>
</tr>
<tr>
<td>Température du liquide [°F (°C)]</td>
<td>32 à 122 (0 à 50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Température ambiante [°F (°C)]</td>
<td>32 à 113 (0 à 45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Précision de répétition</td>
<td>± 1 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niveau de pression sonore [dB(A)]</td>
<td>< 70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Indépendamment de la contre-pression
*2 Hauteur d’aspiration de 1 mètre au maximum

4.2 Caractéristiques électriques

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d’alimentation [VAC]</td>
<td>1 x 100-240 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consommation de courant maximale [A]</td>
<td>sous 100 V</td>
<td>1,25</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sous 230 V</td>
<td>0,67</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Consommation de puissance maximale, P1 [W]</td>
<td>67,1</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fréquence [Hz]</td>
<td>50/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catégorie de surtension</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degré de pollution</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classe d’isolation</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Câble d’alimentation</td>
<td>1,5 m H05RN-F avec fiche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Caractéristiques d’entrée/sortie

La pompe présente diverses possibilités d’entrée et de sortie selon la variante de commande.

Signal d’entrée

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension de l’entrée du capteur de niveau [VCC]</td>
<td>5</td>
</tr>
<tr>
<td>Tension de l’entrée de pulsations [VCC]</td>
<td>5</td>
</tr>
<tr>
<td>Période mini de pulsation à répétition [ms]</td>
<td>3,3</td>
</tr>
<tr>
<td>Impédance de l’entrée analogique 0/4-20 mA [Ω]</td>
<td>250</td>
</tr>
<tr>
<td>L’entrée analogique nécessite un signal isolé du cadre.</td>
<td></td>
</tr>
<tr>
<td>Résistance mini au cadre : 50 kΩ</td>
<td></td>
</tr>
<tr>
<td>Résistance de boucle maximale du circuit de signal de pulsations [Ω]</td>
<td>250</td>
</tr>
<tr>
<td>Résistance de boucle maximale du circuit de signal de niveau [Ω]</td>
<td>250</td>
</tr>
<tr>
<td>Signal de sortie</td>
<td></td>
</tr>
<tr>
<td>Charge maximale de la sortie du relais d’alarme, sous charge ohmique [A]</td>
<td>2</td>
</tr>
<tr>
<td>Tension maximale, sortie du relais d’alarme [V]</td>
<td>42</td>
</tr>
</tbody>
</table>
4.4 Dimensions
Voir les dimensions à la fin de cette notice.
Toutes les dimensions sont en inches (mm).

5. Installation

5.1 Réglementation de sécurité

⚠️

- Le liquide est sous pression et peut être dangereux.
- Lors du travail avec des produits chimiques, il y a lieu d’observer strictement la réglementation locale de sécurité (imposant, par exemple, le port de vêtements de protection).
- Avant toute intervention sur la pompe de dosage et sur l’installation, il faut mettre la pompe hors circuit et s’assurer qu’elle ne risque pas d’être remise en circuit accidentellement. Avant de raccorder à nouveau la tension d’alimentation, il faut placer le tuyau flexible de dosage de telle manière que le produit chimique éventuellement présent dans la tête de dosage ne risque pas de gicler et de causer des dommages corporels.
- Si la soupape de purge de la tête de dosage est utilisée, elle doit être raccordée à un tuyau souple retournant vers le réservoir.
- En cas de changement de produit chimique, s’assurer que les matériaux de la pompe de dosage et l’installation sont résistants au nouveau produit chimique. Si un produit chimique et un autre produit chimique peuvent réagir entre eux, nettoyer à fond la pompe et l’installation avant de remplir avec le nouveau produit chimique.

Procéder comme suit :
Placer le tuyau flexible d’aspiration dans l’eau et appuyer sur la touche jusqu’à la disparition de tous les résidus chimiques.

Nota : Lorsque les touches et sont pressées simultanément, la pompe est commandée pour fonctionner à pleine capacité pendant un nombre de secondes déterminé. Le nombre de secondes restantes apparaîtra sur l’afficheur. La valeur maximale est de 300 secondes.

5.2 Environnement de l’installation

- Il faut éviter d’exposer l’installation directement aux rayons du soleil. Ceci s’applique tout particulièrement aux pompes à têtes de dosage en plastique, ce type de matériau pouvant facilement être endommagé par les rayons solaires.

- Si la pompe est installée à l’extérieur, une enceinte ou protection similaire est requise pour protéger la pompe contre la pluie et les agents atmosphériques.

5.3 Installation de la pompe

- Voir également l’exemple d’installation à la section 5.4 Exemple d’installation.

La tête de dosage peut contenir de l’eau depuis son essai en usine. Si un liquide ne devait pas entrer en contact avec de l’eau est dosé, il est recommandé de faire tourner la pompe avec un autre liquide de manière à retirer l’eau de la tête de dosage avant l’installation.

Serrer en croix les vis de la tête de dosage une fois à l’aide d’une clé dynamométrique avant la mise en service et après 2 à 5 heures de fonctionnement à 4,06 ft·lb (+ 0,37/- 0 ft·lb) (5,5 Nm (+ 0,5/- 0 Nm)).

- Toujours installer la pompe sur le pied de soutien avec orifices d’aspiration et de refoulement verticaux.
- Toujours utiliser des outils appropriés au montage de parties en plastique. Ne jamais appliquer de forces superflues.
- S’assurer que la pompe de dosage et l’installation sont conçues de telle manière que ni l’équipement de l’installation, ni les bâtiments ne puissent subir des dommages par suite d’une fuite de la pompe ou d’une rupture des tuyaux flexibles ou rigides. L’installation de tuyaux de fuite et de réservoirs de collecte est recommandée.
- S’assurer que l’orifice de vidange de la tête de dosage pointe vers le bas, voir la fig. 1.

Précaution
Ne jamais raccorder de flexible à l’orifice de purge.

Précaution
Serrer en croix les vis de la tête de dosage une fois à l’aide d’une clé dynamométrique avant la mise en service et après 2 à 5 heures de fonctionnement à 4,06 ft·lb (+ 0,37/- 0 ft·lb) (5,5 Nm (+ 0,5/- 0 Nm)).

Fig. 1

Fig. 1
5.4 Exemple d’installation
Le dessin de la fig. 2 montre un exemple d’installation.

La pompe DME peut être installée de plusieurs façons. Le croquis ci-dessous montre un exemple avec panneau de commande monté sur le côté. Le réservoir est un réservoir chimique Grundfos pourvu d’une unité de commande de niveau Grundfos.

Fig. 2

5.5 Raccordement électrique
- Le raccordement électrique de la pompe doit être effectué par du personnel qualifié conformément aux réglementations locales.
- Pour les caractéristiques électriques de la pompe, consulter la section 4.2 Caractéristiques électriques.
- Ne jamais poser de câbles de signal dans des conduites de câbles de puissance.

Avertissement
Danger en cas du non déclenchement de l’interrupteur différentiel !
Si la pompe est raccordée à une installation électrique dans laquelle un interrupteur différentiel est utilisé comme protection supplémentaire, celui-ci doit se déclencher en cas de courants de défaut DC (courant continu pulsé). Il faut donc utiliser un interrupteur différentiel de type B, sensible au courant universel.
5.6 Schéma de raccordement

Fig. 3

Câble 1 : Entrée pour signal analogique, signal de pulsation et fuite de la membrane

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analogique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsation</td>
<td>Libre de potentiel</td>
<td>Libre de potentiel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsation</td>
<td>5 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numéro/couleur</td>
<td>2 / noir</td>
<td>3 / marron</td>
<td>4 / bleu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuite de la membrane*</td>
<td>5 V</td>
<td>PNP</td>
<td>Terre</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Câble 2 : Sortie du relais d’alarme

<table>
<thead>
<tr>
<th>Numéro / couleur</th>
<th>1 / marron</th>
<th>2 / blanc</th>
<th>3 / bleu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relais d’alarme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commun</td>
<td>Normalement ouvert</td>
<td>Normalement fermé</td>
<td></td>
</tr>
</tbody>
</table>
Câble 3 : Entrée pour arrêt du dosage et surveillance du dosage ou sortie du dosage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt dosage (entrée)</td>
<td>5 V</td>
<td>Libre de potentiel</td>
<td>Libre de potentiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrêt dosage (entrée)</td>
<td>Libre de potentiel</td>
<td>Libre de potentiel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance du dosage</td>
<td>Libre de potentiel</td>
<td>Libre de potentiel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance du dosage</td>
<td>Terre</td>
<td>5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collecteur ouvert (NPN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Le collecteur ouvert (NPN) peut être utilisé pour un relais ou une lampe.

1. **Alimentation interne** 5 VDC :
 - Intensité maxi : 100 mA

2. **Alimentation externe** :
 - Max. 24 VDC - 100 mA

Câble 4 : Entrée de niveau

<table>
<thead>
<tr>
<th>Numéro / couleur</th>
<th>1 / marron</th>
<th>2 / blanc</th>
<th>3 / bleu</th>
<th>4 / noir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réservoir vide</td>
<td>Libre de potentiel*</td>
<td>Libre de potentiel*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réservoir vide</td>
<td></td>
<td></td>
<td>5 V</td>
<td>Terre</td>
</tr>
<tr>
<td>Niveau bas</td>
<td>Libre de potentiel*</td>
<td>Libre de potentiel*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niveau bas</td>
<td></td>
<td></td>
<td>5 V</td>
<td>Terre</td>
</tr>
</tbody>
</table>

* La fonction des contacts libres de potentiel peut être réglée via le panneau de commande (NO = normalement ouvert et NC = normalement fermé), voir section 6.21 Configuration d’entrée.

Fig. 4

TM03 7868 5006

TM03 7869 5006
6. Fonctions

6.1 Panneau de commande

Afficheur LCD, voir section 6.8

Navigation/réglages, voir section 6.8

Voyant vert, voir section 6.6

Capacité max. (amorçage), voir section 6.3

Voyant rouge, voir section 6.6

Raccord M12 entrée analogique/pulsation/fuite, voir sections 6.11, 6.12, 6.5

Câble pour Profibus, voir section 6.7

Menu, voir section 6.8

Navigation/réglages, voir section 6.8

Touche on/off, voir section 6.8

Raccord M12 arrêt du dosage, voir section 6.2

Raccord M12 commande de niveau, voir section 6.4

Alimentation électrique

Raccord, relais d'alarme, voir section 6.6

Fig. 5
6.2 Mise en marche/arrêt de la pompe
La pompe peut être mise en marche/arrêtée de deux manières différentes :
• Localement sur le panneau de commande de la pompe.
• Au moyen d’un interrupteur externe on/off. Voir le schéma de raccordement à la section 5.6 Schéma de raccordement.

6.3 Amorçage/purge de la pompe
Le panneau de commande de la pompe comprend une touche . Appuyer sur cette touche si la capacité maximale de la pompe est requise durant une courte période, par exemple lors de la mise en marche. Lorsque la touche est relâchée, la pompe retourne automatiquement au mode de fonctionnement antérieur.

Durant l’amorçage/purge, il est recommandé de faire tourner la pompe sans contre-pression ou d’ouvrir la soupape de purge.

Nota : Lorsque les touches et sont pressées simultanément, la pompe est commandée pour fonctionner à pleine capacité pendant un nombre de secondes déterminé. Le nombre de secondes restantes apparaîtra à l’afficheur. La valeur maximale est de 300 secondes.

6.4 Commande de niveau
La pompe peut être montée avec une unité de commande de niveau pour la surveillance du niveau de produit chimique dans le réservoir.
La pompe peut réagir à deux signaux de niveau. La pompe réagira différemment en fonction de l’influence exercée sur les capteurs de niveau individuels.

<table>
<thead>
<tr>
<th>Capteurs de niveau</th>
<th>Réaction de la pompe</th>
</tr>
</thead>
</table>
| Capteur supérieur activé (contact fermé) | • Le voyant rouge est allumé.
• La pompe fonctionne.
• Le relais d’alarme est activé. |
| Capteur inférieur activé (contact fermé) | • Le voyant rouge est allumé.
• La pompe est arrêtée.
• Le relais d’alarme est activé. |

Pour le raccordement de l’unité de commande de niveau et de la sortie d’alarme, voir section 5.6 Schéma de raccordement.

6.5 Capteur de fuite de la membrane
La pompe peut être équipée d’un capteur qui détecte les fuites de la membrane.
Le capteur doit être connecté à l’orifice de vidange située sur la tête de dosage.
En cas de fuite de la membrane, le signal du capteur génère une alarme et le relais d’alarme sera activé. Voir aussi section 6.6 Voyants lumineux et sortie d’alarme.
Pour le raccordement du capteur de fuite de la membrane, voir section 5.6 Schéma de raccordement.
6.6 Voyants lumineux et sortie d’alarme

Les voyants vert et rouge sur la pompe sont utilisés pour les indications de fonctionnement et de défauts. Dans la variante de commande "AR", la pompe peut activer un signal d’alarme externe au moyen d’un relais d’alarme intégré qui doit uniquement être connecté à la tension extra basse de sécurité (SELV).

Le relais d'alarme doit uniquement être connecté aux tensions conformes aux conditions SELV de EN/IEC 60 335-1.

Le signal d’alarme est activé au moyen d’un contact interne libre de tout potentiel.

Les fonctions des voyants lumineux et du relais incorporé figurent dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Condition</th>
<th>Voyant vert</th>
<th>Voyant rouge</th>
<th>Afficheur</th>
<th>Sortie d’alarme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pompe fonctionne</td>
<td>Allumé</td>
<td>Eteint</td>
<td>Aucune indication</td>
<td></td>
</tr>
<tr>
<td>Mise à l’arrêt</td>
<td>Clignote</td>
<td>Eteint</td>
<td>Aucune indication</td>
<td></td>
</tr>
<tr>
<td>Défaut de pompe</td>
<td>Eteint</td>
<td>Allumé</td>
<td>EEPROM</td>
<td></td>
</tr>
<tr>
<td>Défaut d’alimentation</td>
<td>Eteint</td>
<td>Eteint</td>
<td>ARRÊT</td>
<td></td>
</tr>
<tr>
<td>Pompe fonctionne, niveau chimique bas*1</td>
<td>Allumé</td>
<td>Allumé</td>
<td>BAS</td>
<td></td>
</tr>
<tr>
<td>Réservoir vide*1</td>
<td>Eteint</td>
<td>Allumé</td>
<td>VIDE</td>
<td></td>
</tr>
<tr>
<td>Signal analogique < 2 mA</td>
<td>Eteint</td>
<td>Allumé</td>
<td>PAS mA</td>
<td></td>
</tr>
<tr>
<td>La pompe tourne mais la quantité dosée est trop faible par rapport au signal du contrôleur de dosage*2</td>
<td>Allumé</td>
<td>Allumé</td>
<td>PAS DEB.</td>
<td></td>
</tr>
<tr>
<td>Surchauffe</td>
<td>Eteint</td>
<td>Allumé</td>
<td>TEMP. MAX.</td>
<td></td>
</tr>
<tr>
<td>Défaut de communication interne</td>
<td>Eteint</td>
<td>Allumé</td>
<td>COM. INT.</td>
<td></td>
</tr>
<tr>
<td>Défaut Hall interne*3</td>
<td>Eteint</td>
<td>Allumé</td>
<td>HALL</td>
<td></td>
</tr>
<tr>
<td>Fuite de la membrane*4</td>
<td>Eteint</td>
<td>Allumé</td>
<td>Fuite</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Voyant vert</th>
<th>Voyant rouge</th>
<th>Afficheur</th>
<th>Sortie d’alarme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pression maxi dépassée*4</td>
<td>Eteint*5</td>
<td>Allumé</td>
<td>SURCHARG</td>
<td></td>
</tr>
<tr>
<td>Plus de pulsations que la capacité</td>
<td>Allumé</td>
<td>Allumé</td>
<td>DEB. MAX.</td>
<td></td>
</tr>
<tr>
<td>Aucune rotation du moteur détectée*3</td>
<td>Eteint</td>
<td>Allumé</td>
<td>ORIGO</td>
<td></td>
</tr>
</tbody>
</table>

*1 Nécessite une connexion avec capteurs de niveau. Voir section 6.22 Réservoir vide (alarme).
*2 Nécessite l’activation de la fonction de surveillance du dosage et le raccordement à un contrôleur de dosage.
*3 Veuillez contacter Grundfos.
*4 Les alarmes peuvent être réarmées lorsque les défauts ont été corrigés.
*5 La pompe fera 10 tentatives de redémarrage avant d’être en permanence en mode "ARRÊT".

6.7 Communication par fieldbus

La pompe peut être configurée pour des applications par fieldbus (Profibus). En plus de la notice d’installation et de fonctionnement habituelle, les pompes Profibus sont fournies avec une notice spécifique Profibus.
6.8 Menu

La pompe fait appel à un menu convivial qui est activé en appuyant sur la touche . Pendant la phase de démarrage, tous les textes apparaissent en langue anglaise. Pour choisir une autre langue, voir section 6.20 Langue.

Toutes les données élémentaires de menu sont décrites dans les sections suivantes. Lorsque apparaît à côté d’une donnée élémentaire de menu, cela signifie que cette donnée-là est activée. En sélectionnant "RETOUR" n’importe où dans la structure du menu, on retourne à l’affichage du fonctionnement sans qu’aucune modification ait été opérée.

Fig. 6

S’applique uniquement aux versions avec Profibus

Voir section 6.10
Voir section 6.11
Voir section 6.12
Voir section 6.13
Voir section 6.14
Voir section 6.15
Voir section 8.
Voir section 6.16
Voir section 6.17
Voir section 6.18
Voir section 6.19
Voir section 6.20
Voir section 6.21
Voir section 6.22
Voir section 6.23
Voir section 6.25
6.9 Modes de fonctionnement

Nota : Les valeurs "l" et "ml" affichées ne sont fiables que si la pompe a été calibrée en vue de son installation réelle, voir section 8. **Calibrage**. La pompe peut fonctionner selon cinq modes de fonctionnement différents :
- Manuel
- Pulsation
- Analogique
- Temporisation (commande par lots interne)
- Quantité par lots (commande par lots externe)
Voir description dans les sections suivantes.

6.10 Manuel
La pompe effectue le dosage de façon aussi constante et égale que possible, sans aucun signal extérieur.
Régler la quantité à doser en l/h ou ml/h.
La pompe passe automatiquement de l’une à l’autre unité de mesure.
Plage de réglage :
DME 60 : 0,0198 - 15,8 gph (75 ml/h - 60 l/h)
DME 150 : 0,0528 - 39,2 gph (200 ml/h - 150 l/h)
DME 375 : 0,132 - 99 gph (500 ml/h - 375 l/h)
DME 940 : 0,317 - 248,3 gph (1200 ml/h - 940 l/h)

6.11 Pulsation
La pompe effectue le dosage conformément à un signal de pulsation externe, en provenance d’un compteur d’eau avec sortie de pulsations ou d’un régulateur.
Régler la quantité à doser par pulsation en ml/pulsation. La pompe ajuste sa capacité en fonction de deux facteurs :
- Fréquence de pulsations externes.
- La quantité réglée par pulsation.
La pompe mesure l’intervalle de temps entre deux pulsations et calcule ensuite la vitesse donnant le débit requis (quantité réglée par pulsation multipliée par la fréquence de pulsations). Si la quantité réglée par pulsation, multipliée par la fréquence de pulsations, excède la capacité de la pompe, celle-ci fonctionne au maximum de sa capacité. Les pulsations excédentaires seront ignorées et l’affichage indique "DEB. MAX." apparaîtra dans l’affichage.
6.12 Analogique
La pompe effectue le dosage conformément à un signal analogique externe. La quantité dosée est proportionnelle à la valeur d'entrée en mA.

- 4-20 (par défaut) : 4 mA = 0 %.
- 20 mA = 100 %.
- 20-4 : 4 mA = 100 %.
- 20 mA = 0 %.
- 0-20 : 0 mA = 0 %.
- 20 mA = 100 %.
- 20-0 : 0 mA = 100 %.
- 20 mA = 0 %.

Voir la fig. 9.
La limitation de capacité influencera la capacité. La valeur 100 % correspond à la capacité maximale de la pompe ou à la capacité maximale réglée, voir section 6.16 Limitation de capacité.
L'entrée analogique nécessite un signal isolé du cadre. Résistance mini au cadre : 50 kΩ.

Fig. 9

Si on sélectionne 4-20 mA ou 20-4 mA et que le signal descend en dessous de 2 mA, la pompe indique une défaillance. Ce cas se présente si la connexion est interrompue, par exemple si le câble est endommagé.

6.13 Temporisation
La pompe effectue le dosage de la quantité en lots réglée à la capacité maximale ou à la capacité maximale réglée, voir section 6.16 Limitation de capacité.

Le temps jusqu'au premier dosage "NX" et les intervalles suivants "IN" peuvent être réglés en minutes, heures et jours. La limite de temps maximale est de 9 jours, 23 heures et 59 minutes (9:23:59). La valeur minimale acceptable est 1 minute. La minuterie interne continue de fonctionner, même si la pompe est mise à l'arrêt au moyen de la touche on/off, par le fait que le réservoir est vide ou par le signal d'arrêt, voir la fig. 12.

Durant le fonctionnement, "NX" effectue toujours un compte à rebours de "IN" à zéro. Ainsi, le temps restant jusqu'au prochain lot peut toujours être lu.

La valeur "IN" doit être plus élevée que la durée nécessaire pour exécuter un lot. Si la valeur "IN" est inférieure, le lot suivant sera ignoré.

En cas de défaillance de l'alimentation, la quantité réglée à doser, la durée "IN" et la durée résiduelle "NX" sont mémorisées. Lorsque l'alimentation est rétablie, la pompe redémarrer avec la durée "NX" qui était en vigueur au moment de la défaillance de l'alimentation. De cette manière, le cycle de temporisation en cours continue, mais il est retardé de la durée de la défaillance d'alimentation.

Fig. 10

Fig. 11

Utiliser les touches

Valeur selon signal analogique

Modifier le mode analogique conformément à l’illustration de la fig. 11 :
Plage de réglage, volume ajustable par lot :
DME 60: 0,0017 to 31,7 gal (6,25 ml - 120 l)
DME 150: 0,0041 to 79,3 gal (15,6 ml - 300 l)
DME 375: 0,01 to 198,1 gal (39,1 ml - 750 l)
DME 940: 0,025 to 496,7 gal (97,9 ml - 1880 l)
Seules les valeurs correspondant à des courses de dosage complètes (selon le facteur de calibrage) peuvent être sélectionnées. Le réglage minimum dépend du facteur de calibrage. Le réglage minimum indiqué ci-dessus correspond à la valeur de calibrage par défaut.

Exemple :
Si le facteur de calibrage est de 625 (= 6,25 ml/course), la valeur réglable minimale en mode temporisation ou quantité par lot sera de 6,25 ml (= 1 course) -> la suivante sera de 12,5 ml (= 2 courses), etc.
Ces pas se poursuivront jusqu'à la valeur correspondant à 100 courses de dosage. Au-dessus de cette valeur, la gamme de réglage comporte des pas standard comme dans les autres modes de fonctionnement.
Si le facteur de calibrage est modifié après le réglage des modes temporisation ou quantité par lot, la pompe recalculera automatiquement un nouveau nombre de courses de dosage par lot et modifiera la valeur affichée en s'approchant le plus possible de la valeur initialement réglée.
6.14 Quantité par lots
La pompe effectue le dosage de la quantité en lots réglée à la capacité maximale ou à la capacité maximale réglée, voir section 6.16.
La quantité est dosée à chaque moment où la pompe reçoit une pulsation externe.
Si la pompe reçoit de nouvelles pulsations avant que le lot précédent ait été exécuté, ces pulsations seront ignorées.

![Fig. 14](image)

La plage de réglage est identique à celle pour "Temporisation", voir section 6.13 Temporisation.

6.15 Anti-cavitation
La pompe possède une fonction anti-cavitation. Lorsque cette fonction est sélectionnée, la pompe agrandit sa course d’aspiration pour assurer un amorçage optimal.
La fonction anti-cavitation est utilisée :
- lorsque des liquides à haute viscosité sont pompés,
- dans le cas de la présence d’un long tuyau souple pour l’aspiration, et
- dans le cas d’une grande hauteur d’aspiration.
En fonction des circonstances, la vitesse du moteur pendant la course d’aspiration peut être réduite de 75 %, 50 % ou 25 % à comparer de la vitesse normale du moteur.
La capacité maximale de la pompe est réduite lorsque la fonction anti-cavitation est sélectionnée.

![Fig. 15](image)

![Fig. 16](image)
6.16 Limitation de capacité
Cette fonction offre la possibilité de réduire la capacité maximale de la pompe (CAP. MAX.). Ceci influencera cependant les fonctions dans lesquelles la pompe fonctionne normalement à pleine capacité.
En conditions de fonctionnement normal, la pompe ne peut fonctionner à une capacité supérieure à celle indiquée par l'afficheur. Ceci ne s’applique pas à la touche de capacité maximale , voir section 6.3 Amorçage/purge de la pompe.

Fig. 17

6.17 Compteurs
La pompe peut afficher des compteurs "ne pouvant être réinitialisés" pour :
• la "QUANTITE"
 la valeur cumulée de la quantité dosée, exprimée en litres ou en US gallons.
• les "COURSES"
 le nombre cumulé de courses de dosage.
• les "HEURES"
 le nombre cumulé d’heures de fonctionnement.
• le "RÉSEAU"
 le nombre cumulé de fois que l’alimentation électrique a été enclenchée.

Fig. 18
6.18 Remise à l’état initial
Lorsque "REG. DEF." est activé, la pompe retournera aux réglages d’usine.
Nota : Le calibrage est également remis au réglage par défaut. Ceci signifie qu’un nouveau calibrage est requis lorsque la fonction "REG. DEF." a été utilisée. Les réglages par défaut sont les réglages usine des pompes standards. Sélectionner "DEFAULT" dans le menu "CONFIG."

Réglages par défaut :
- Mode de fonctionnement : Manuel
- Capacité : Capacité maximale
- Verrouillage du panneau de commande : Non verrouillé
- Code de défaut de verrouillage : 2583
- Anti-cavitation : Non active
- Signal analogique : 4-20 mA
- Entrées digitales : NO (normalement ouvert)
- Limitation de capacité : Capacité maximale
- Réarmement d’alarme pour redémarrer la pompe
- Surveillance du dosage : Arrêt
- Langue : Anglais
- Unités : Métrique

Fig. 19

6.19 Retour

La fonction "RETOUR" permet, à partir de n’importe quel niveau du menu, de revenir à l’affichage du fonctionnement sans apporter aucune modification après que les fonctions du menu ont été utilisées.

6.20 Langue
Le texte peut être affiché dans l’une des langues suivantes :
- Français
- Anglais
- Allemand
- Italien
- Espagnol
- Portugais
- Néerlandais
- Suédois
- Finnois
- Danois
- Tchèque
- Slovaque
- Polonais
- Russe
6.21 Configuration d’entrée

La figure 22 montre tous les réglages possibles. Les entrées de niveau, d’arrêt de dosage et de fuite de la membrane peuvent être modifiées de manière à passer d’un fonctionnement NO (normalement ouvert) à un fonctionnement NF (normalement fermé). En cas de modification, les entrées doivent être mises en court-circuit en fonctionnement normal. L’entrée pour surveillance du dosage peut être changée de "ARRÊT" sur "MARCHÉ".

Pour l’entrée analogique, l’un des types de signaux suivants peut être sélectionné :
- 4-20 mA (par défaut),
- 20-4 mA,
- 0-20 mA,
- 20-0 mA.
Voir aussi la section 6.12 Analogique.

Utiliser les touches de navigation
6.22 Réservoir vide (alarme)
La fonction alarme peut être réglée sur "REA. AUT." ou "REA. MAN.". La fonction est utilisée lorsque le capteur de niveau indique "VIDE". L'alarme peut soit se réarmer elle-même (REA. AUT.) ou être réarmée manuellement (REA. MAN.). Pour plus d'informations sur les autres fonctions d'alarme, voir paragraphe 6.6 Voyants lumineux et sortie d'alarme.

6.23 Unités de mesure
Il est possible de sélectionner les unités métriques (litre/millilitre) ou les unités américaines (gallons/milli- litre).

Unités de mesure métriques :
- Dans les modes manuel et analogique, régler la quantité à doser en litres par heure (l/h) ou en millilitres par heure (ml/h).
- En mode pulsation, régler la quantité à doser en ml/pulsation. La capacité effective est indiquée en litres par heure (l/h) ou en millilitres par heure (ml/h).
- Pour le calibrage, régler la quantité à doser en ml pour 100 courses.
- Dans les modes températisation et quantité par lot, régler la quantité à doser en litres (l) ou en millilitres (ml).

Unités de mesure américaines :
- Dans les modes manuel et analogique, régler la quantité à doser en gallons par heure (gph).
- En mode pulsation, régler la quantité à doser en ml/pulsation. La capacité effective est indiquée en gallons par heure (gph).
- Pour le calibrage, régler la quantité à doser en ml pour 100 courses.
- Dans les modes températisation et quantité par lot, régler la quantité à doser en gallons (gal).
- Dans l'option "QUANTITE" du menu "COMPTEUR", la quantité dosée est indiquée en US gallons (gal).

![Diagramme de configuration et de langue](image_url)
6.24 Surveillance du dosage

La pompe incorpore une entrée de surveillance de dosage (voir vue d’ensemble connexion dans fig. 3).

La pompe peut être équipée d’un contrôleur de dosage capable de détecter les courses de dosage inefficaces.

Le contrôleur de dosage est conçu pour le contrôle et la surveillance des liquides qui pourraient causer une accumulation de gaz dans la tête de dosage provoquant l’arrêt de dosage même si la pompe est encore en fonctionnement.

Pour chaque course de dosage mesurée, le contrôleur donne un signal de pulsation à l’entrée de niveau pour que la pompe puisse comparer les courses de dosage accomplies (à partir du capteur de course interne) avec les courses physiques mesurées d’une manière externe (à partir du contrôleur de dosage). Si une course de dosage externe n’est pas mesurée avec la course de dosage interne, ceci est considéré comme un défaut qui peut avoir été provoqué par un réservoir vide ou la présence de gaz dans la tête de dosage.

Le contrôleur de dosage devra être connecté à l’entrée "contrôleur de dosage". Cette entrée doit être configurée pour la surveillance de dosage.

Dès que l’entrée a été réglée sur surveillance de dosage et dès que le contrôleur a été connecté et réglé, la fonction de surveillance de dosage sera active.
6.25 Verrouillage du panneau de commande

Il est possible de verrouiller les touches du panneau de commande afin d'éviter toute commande intempestive de la pompe. La fonction verrouillage peut être réglée sur "MARCHÉ" ou "ARRÊT". Le réglage par défaut est "ARRÊT".

Un code PIN doit être saisi pour passer de "ARRÊT" à "MARCHÉ". Lorsque "MARCHÉ" est sélectionné la première fois, "0000" apparaît sur l'afficheur. Si un code a déjà été saisi, il apparaît lorsque l'on tente de passer à "MARCHÉ". Ce code peut être saisi à nouveau ou modifié.

Si aucun code n'a été saisi, il convient de régler un code de la même manière que les valeurs "NX" et "IN" décrites à la section 6.13 Temporisation.

Si un code a déjà été saisi, les chiffres actifs clignotent.

Si l'on tente de faire fonctionner la pompe alors qu'elle est verrouillée, "VERROU." apparaît dans l'afficheur pendant 2 secondes, suivi de "0000". Un code doit être saisi. Si la saisie du code n'a pas commencé dans les 10 secondes, l'affichage du fonctionnement apparaît sans modifications.

Si un code erroné est saisi, "VERROU." apparaît dans l'afficheur pendant 2 secondes, suivi de "0000". Un nouveau code doit être saisi. Si la saisie de ce code n'a pas commencé dans les 10 secondes, l'affichage du fonctionnement apparaît sans modifications. Cet affichage apparaît également si la saisie du code correct dépasse 2 minutes.

Si la fonction verrouillage a été activée mais que le panneau de commande n'est pas verrouillé, le panneau de commande sera automatiquement verrouillé s'il ne reçoit aucune commande pendant 2 minutes.

La fonction verrouillage peut aussi être réactivée en sélectionnant "MARCHÉ" dans le menu "VER.BOUT". Le code précédemment saisi s'affiche alors et doit être saisi à nouveau en appuyant sur la touche quatre fois. Le code peut aussi être modifié.

Le panneau de commande peut être déverrouillé soit à l'aide du code sélectionné, soit à l'aide du code usine 2583.

Les touches et entrées suivantes continuent d'être actives pendant le verrouillage du panneau :
- Amorçage (touche).
- Touche on/off.
- Toutes les entrées externes.

Fig. 25

Activation de la fonction verrouillage et verrouillage du panneau de commande :
1. Sélectionner "VER.BOUT" dans le menu.
2. Sélectionner "MARCHÉ" à l'aide des touches et et valider à l'aide de .
3. Saisir ou saisir à nouveau un code à l'aide des touches et .

La fonction verrouillage est à présent activée et le panneau de commande est verrouillé.

Déverrouillage du panneau de commande (sans désactivation de la fonction verrouillage) :
1. Appuyer sur une fois. "VERROU." apparaît dans l'afficheur pendant 2 secondes, suivi de "0000".
2. Saisir le code à l'aide des touches et .

Le panneau de commande est à présent déverrouillé et sera automatiquement re-verrouillé s'il ne reçoit aucune commande pendant 2 minutes.

Désactivation de la fonction verrouillage :
1. Déverrouiller le panneau de commande conformément aux instructions ci-dessus.
2. Sélectionner "VER.BOUT" dans le menu.
3. Sélectionner "ARRÊT" à l'aide des touches et et valider à l'aide de .

La fonction verrouillage est alors désactivée et le panneau de commande est déverrouillé.

* Le panneau peut toujours être déverrouillé à l'aide du code 2583.
7. Mise en marche

<table>
<thead>
<tr>
<th>Pas</th>
<th>Action</th>
</tr>
</thead>
</table>
| **1** | Avant la mise en service, resserrer les vis de la tête de dosage :
• Serrer en croix les vis de la tête de dosage une fois à l'aide d'une clé dynamométrique avant la mise en service et après 2 à 5 heures de fonctionnement à torque 4,06 ft·lb (+ 0,37/- 0 ft·lb) (5,5 Nm (+ 0,5/- 0 Nm)). |
| **2** | Raccorder les tuyaux flexibles/rigides :
• Raccorder les tuyaux flexibles/rigides d’aspiration et de dosage à la pompe.
• Raccorder un tuyau souple à la soupape de purge, si nécessaire, et amener le tuyau au réservoir.
• Ne jamais raccorder de flexible à l’orifice de purge. |
| **3** | Raccorder les câbles :
• Raccorder les câbles de commande/niveau, si présents, à la pompe, voir section 5.6 Schéma de raccordement. |
| **4** | Enclencher l’alimentation électrique :
• L’afficheur est allumé.
• Le voyant vert clignote (la pompe s’est arrêtée).
• Sélectionner la langue, si nécessaire, voir section 6.20 Langue. |
| **5** | Sélectionner le mode de fonctionnement (voir section 6.9 Modes de fonctionnement) :
• Manuel.
• Pulsation.
• Analogique.
• Temporisation.
• Quantité par lots. |
| **6** | Mettre la pompe en marche :
• Mettre la pompe en marche en appuyant sur la touche on/off.
• Le voyant vert est illuminé de façon permanente. |
| **7** | Amorçage/purge :
• Appuyer sur la touche sur le panneau de commande de la pompe et laisser tourner la pompe sans contre-pression. Ouvrir la soupape de purge, si nécessaire.
Lorsque les touches et sont pressées simultanément lors de l’amorçage, la pompe est commandée pour fonctionner à pleine capacité pendant un nombre de secondes déterminé. |
| **8** | Calibrage :
• Lorsque la pompe a été amorcée et qu’elle tourne à la contre-pression correcte, calibrer la pompe, voir section 8. Calibrage. |

Si la pompe ne fonctionne pas de façon satisfaisante, voir section 10. Tableau de recherche des pannes.
8. Calibrage

Il est important que la pompe soit calibrée après installation pour s’assurer que la valeur correcte (ml/h ou l/h) apparaisse dans l'afficheur.

Le calibrage peut être effectué de deux manières différentes :

- **Calibrage direct.**
 La quantité dosée de 100 courses est mesurée directement. Voir section 8.1 **Calibrage direct.**

- **Calibrage de contrôle.** Voir section 8.2 **Calibrage de contrôle.**

![Diagram]

Fig. 26

La pompe fera 100 courses

Régler la valeur, voir section 8.2
8.1 Calibrage direct

Avant calibrage, s’assurer :
- que la pompe est installée avec soupape d’aspiration, soupape d’injection, etc. dans l’installation existante.
- que la pompe fonctionne à la contre-pression à laquelle elle est censée fonctionner (régler la soupape de contre-pression si nécessaire).
- que la pompe fonctionne à la hauteur d’aspiration correcte.

Pour effectuer un calibrage direct, procéder de la façon suivante :

<table>
<thead>
<tr>
<th>Action</th>
<th>Afficheur de pompe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Purger la tête de dosage et le tuyau d’aspiration.</td>
<td></td>
</tr>
</tbody>
</table>
| 3. Remplir un verre gradué de liquide de dosage Q_1.
 DME 60 : env. 1,5 l
 DME 150 : env. 2,5 l
 DME 375 : env. 6 l
 DME 940 : env. 14 l | |
| 4. Lire et noter la quantité Q_1. | |
| 5. Placer le tuyau d’aspiration dans le verre gradué | |
| 6. Aller dans le menu de calibrage, voir section 6.8. | |
| 7. Appuyer deux fois sur la touche (). | |
| 8. La pompe effectue 100 courses de dosage. | |
| 9. La valeur du facteur de calibrage apparaît sur l’afficheur. | |
| 10. Retirer le tuyau d’aspiration du verre gradué et lire Q_2. | |
| 11. Régler la valeur de l’afficheur à $Q_d = Q_1 - Q_2$. | |
| 12. Confirmer avec la touche (). | |
| 13. La pompe est maintenant calibrée et retourne à l’affichage de fonctionnement. | |
8.2 Calibrage de contrôle
Lors d’un calibrage de contrôle, la valeur de calibrage est calculée en lisant la consommation de produit chimique dans une période donnée et en la comparant avec le nombre de courses de dosage effectuées durant la même période.
Cette méthode de calibrage est très précise et elle est spécialement adaptée au calibrage de contrôle après de longues périodes de fonctionnement ou au cas où le calibrage direct est impossible. Le calibrage peut, par exemple, être effectué lorsque le réservoir de produit chimique a été remplacé ou rempli.
Pour effectuer un calibrage de contrôle, procéder comme suit :
1. Arrêter la pompe en appuyant sur la touche .
2. Lire le compteur et noter le nombre de courses de dosage, voir section 6.17 Compteurs.
3. Lire et noter la quantité de produit chimique présente dans le réservoir.
5. Arrêter la pompe en appuyant sur la touche .
6. Lire le compteur et noter le nombre de courses de dosage, voir section 6.17 Compteurs.
7. Lire et noter la quantité de produit chimique présente dans le réservoir.
8. Calculer la quantité dosée en ml et le nombre de courses de dosage effectuées durant la période de fonctionnement.
9. Calculer la valeur de calibrage de la façon suivante :
(quantité dosée en ml/courses de dosage) x 100.
10. Régler la valeur calculée dans le menu de calibrage.

9. Entretien
Afin d’assurer une longue durée de vie du matériel et un dosage précis, les pièces d’usure telles que les membranes et les vannes doivent être régulièrement contrôlées contre tout signe d’usure éventuel. Lorsque cela s’avère nécessaire, remplacer les pièces usées par des pièces détachées d’origine. Pour tous renseignements complémentaires, contacter votre atelier de maintenance.

9.1 Maintenance régulière

<table>
<thead>
<tr>
<th>Tâche</th>
<th>Intervalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tous les jours</td>
<td>Rechercher d’éventuelles fuites au niveau de l’orifice de purge (fig. 1) et vérifier si ce dernier est obstrué ou sale. Si c’est le cas, suivre les instructions du paragraphe 9.4 Rupture de la membrane.</td>
</tr>
<tr>
<td>Toutes les semaines</td>
<td>Nettoyer toutes les surfaces de la pompe à l’aide d’un chiffon propre et sec.</td>
</tr>
<tr>
<td>Tous les trois mois</td>
<td>Contrôler les vis de la tête de dosage. Si nécessaire, serrer en croix les vis de la tête de dosage avec une clé dynamométrique à torque 4,06 ft·lb (+ 0,37/- 0 ft·lb) (5,5 Nm (+ 0,5/- 0 Nm)). Remplacer immédiatement toutes les vis endommagées.</td>
</tr>
<tr>
<td>Après 2 ans ou 8 000 heures de fonctionnement*</td>
<td>Remplacer la membrane et les vannes (voir 9.3 Procéder à la main- tenance)</td>
</tr>
</tbody>
</table>

* Pour tous les liquides entraînant une usure supérieure, l’intervalle de maintenance doit être raccourci.

9.2 Nettoyage
Si nécessaire, nettoyer toutes les surfaces de la pompe à l’aide d’un chiffon propre et sec.
9.3 Procéder à la maintenance

Pour la maintenance, utiliser uniquement les pièces détachées et accessoires d'origine Grundfos. L'utilisation de pièces détachées et d'accessoires non d'origine retire toute validité de garantie pour les dommages conséquents.

Des informations complémentaires concernant la maintenance sont disponibles sur le catalogue des kits de maintenance sur notre page d'accueil (www.grundfos.com).

Avertissement
*Risque de brûlure par produits chimiques !
Lors du dosage de produits dangereux, respecter impérativement les fiches techniques de sécurité correspondantes !
Porter des vêtements protecteurs (gants, lunettes) pour toute intervention sur la tête de dosage, les raccordements et la tuyauterie !
Ne laisser aucun produit chimique s'écouler de la pompe. Collecter et mettre au rebut tous les produits chimiques de façon conforme !

Avant toute intervention sur la pompe, celle-ci doit être hors service et hors tension. Le système ne doit pas être sous pression !

9.3.1 Aperçu de la tête de dosage

Fig. 27 Tête de dosage, vue éclatée (sans vanne de dégazage)

1. Schéma de sécurité
2. Bride
3. Membrane
4. Vanne du côté refoulement
5. Tête de dosage
6. Vanne du côté aspiration
7. Vis
8. Plaque avant de la tête de dosage (PP et PVDF uniquement)
9. Orifice de purge

9.3.2 Démontage des vannes et membranes

Avant le démонтage, lire les paragraphes 9.4 Rupture de la membrane et 9.5 Fonctionnement avec des vis de la tête de dosage mal serrées attentivement.

Avertissement
Il existe un risque d'explosion si le liquide de dosage pénètre à l'intérieur du corps de la pompe !

Si la membrane est éventuellement endommagée, ou si la pompe a été utilisée avec des vis de la tête de dosage endommagées ou mal serrées, ne pas mettre la pompe sous tension !

Ce paragraphe fait référence à la fig. 27.

1. Retirer la pression du système.
2. Vider la tête de dosage avant toute maintenance et la rincer si nécessaire.
3. Prendre les mesures nécessaires pour garantir que le produit est collecté de façon sécurisée.
4. Démonter les tuyauteries d'aspiration, de refoulement et de dégazage.
5. Dévisser la vanne de dégazage.
6. Démonter les vannes du côté aspiration et du côté refoulement (4, 6).
7. Dévisser les vis (7) sur la tête de dosage (5).
8. Retirer les vis, avec une tête de dosage PP ou PVDF, ainsi que la plaque avant (8).
9. Retirer la tête de dosage (5).
10. Dévisser la membrane (3) dans le sens antihoraire, puis la retirer.
11. Vérifier que l'orifice de purge (9) n'est pas obstrué ou sale. Nettoyer si nécessaire.
12. Vérifier que la membrane de sécurité (1) n'est pas usée ou endommagée.

En l'absence de preuve indiquant que du liquide de dosage est entré dans le corps de la pompe et si la membrane de sécurité n'est pas usée ou endommagée, suivre les instructions du paragraphe 9.3.3 Montage des vannes et membranes. Sinon, suivre les instructions du paragraphe 9.4.1 Liquide de dosage dans le corps de la pompe.
9.3.3 Montage des vannes et membranes

Se reporter également aux paragraphes 5. Installation, 6.3 Amorçage/purge de la pompe et 7. Mise en marche !

La pompe ne doit être remontée qu'en l'absence de preuve que le liquide de dosage est entré dans le corps de la pompe. Sinon, suivre les instructions du paragraphe 9.4.1 Liquide de dosage dans le corps de la pompe.

Ce paragraphe fait référence à la fig. 27.

1. Visser dans le sens horaire sur la nouvelle membrane (3).
2. Fixer la tête de dosage (5).
3. Installer les vis (7), avec une tête de dosage PP ou PVDF, ainsi que la plaque avant (8). Serrer en croix avec une clé dynamométrique.
 - Couple : torque 4,06 ft·lb (+0,37/-0 ft·lb) (5,5 Nm (+0,5/-0 Nm)).
4. Installer les nouvelles vannes (4, 6).
 - Respecter le sens du débit (indiqué par une flèche sur la soupape).
5. Installer la vanne de dégazage.
6. Connecter les tuyauteries d’aspiration, de refoulement et de dégazage.

 Avertissement
 Il existe un risque d’explosion si le liquide de dosage pénètre à l’intérieur du corps de la pompe !

 Tout fonctionnement avec une membrane endommagée peut faire pénétrer le liquide de dosage à l’intérieur du corps de la pompe.

 Précaution
 Serrer en croix les vis de la tête de dosage une fois à l’aide d’une clé dynamométrique avant la mise en service et après 2 à 5 heures de fonctionnement à torque 4,06 ft·lb (+0,37/-0 ft·lb) (5,5 Nm (+0,5/-0 Nm)).

7. Dégazer la pompe (voir paragraphe 6.3 Amorçage/purge de la pompe).

9.4 Rupture de la membrane

En cas de fuite ou de rupture de la membrane, le liquide de dosage s’échappe de l’orifice de purge (fig. 27, pos. 9) sur la bride de la tête de dosage.

En cas de rupture de la membrane, la membrane de sécurité (fig. 27, pos. 1) protège le corps de la pompe contre toute entrée de liquide de dosage.

Lors du dosage de liquides cristallisants, il est possible que la cristallisation obstrue l'orifice de purge. Si le fonctionnement de la pompe n’est pas interrompu sur-le-champ, de la pression peut s'accumuler entre la membrane (fig. 27, pos. 3) et la membrane de sécurité dans la bride (fig. 27, pos. 1). La pression peut faire passer le liquide de dosage à travers la membrane de sécurité dans le corps de la pompe.

La plupart des liquides de dosage sont sans danger lorsqu’ils pénètrent dans le corps de la pompe. Toutefois, certains liquides peuvent provoquer une réaction chimique avec les parties internes de la pompe. Dans le pire des cas, cette réaction peut produire des gaz explosifs au sein du corps de la pompe.

Pour éviter tout danger suite à une rupture de la membrane, respecter les instructions suivantes :

- Procéder à une maintenance régulière. Voir paragraphe 9.1 Maintenance régulière.
- Ne jamais faire fonctionner la pompe si l'orifice de purge est obstrué ou sale.
 - Si l'orifice de purge est obstrué ou sale, suivre les instructions du paragraphe 9.3.2 Démontage des vannes et membranes.
- Ne jamais raccorder de flexible à l'orifice de purge. Lorsqu'un flexible est raccordé à l'orifice de purge, il est impossible de savoir si du liquide de dosage fuit.
- Prendre les précautions qui s'imposent pour éviter les blessures et d'endommager le matériel en cas de fuite de liquide de dosage.
- Ne jamais faire fonctionner la pompe si les vis de la tête de dosage sont endommagées ou mal serrées.
9.4.1 Liquide de dosage dans le corps de la pompe

Avertissement
Danger d'explosion!
Mettre immédiatement la pompe hors tension!
S’assurer qu’elle ne puisse pas être réenclenchée accidentellement!

Si du liquide de dosage est entré dans le corps de la pompe ou si la membrane de sécurité est endommagée ou usée :

- Envoyer la pompe à Grundfos afin qu’elle soit réparée, en suivant les instructions du paragraphe 9.6 Réparations.
- Si la réparation ne semble pas envisageable d’un point de vue économique, mettre la pompe au rebut en respectant les instructions du paragraphe 11. Mise au rebut.

9.5 Fonctionnement avec des vis de la tête de dosage mal serrées

Avertissement
Il existe un risque d'explosion si le liquide de dosage pénètre à l'intérieur du corps de la pompe!
Tout fonctionnement avec des vis de la tête de dosage endommagées ou mal serrées peut faire pénétrar le liquide de dosage à l'intérieur du corps de la pompe.
Si la pompe a été utilisée avec des vis de la tête de dosage endommagées ou mal serrées, mettre immédiatement la pompe hors tension!
S'assurer qu'elle ne puisse pas être réenclenchée accidentellement!
Démonter la tête de dosage sans remettre la pompe sous tension et vérifier que le liquide de dosage n’est pas entré dans le corps de la pompe. Suivre les instructions du paragraphe 9.3.2 Démontage des vannes et membranes.

9.6 Réparations

Avertissement
Le corps de pompe ne doit être ouvert que par un personnel qualifié et agréé par Grundfos!
Les réparations ne doivent être effectuées que par un personnel qualifié et autorisé!
Avant tout travail de maintenance ou de réparation, mettre le système hors tension et débrancher l'alimentation secteur!

Le remplacement du câble d'alimentation doit être exécuté par un atelier de dépannage Grundfos.

Après consultation de Grundfos, retourner la pompe avec la déclaration de sécurité complétée par un spécialiste, à Grundfos. La déclaration de sécurité figure à la suite de ces instructions. Cette déclaration doit être copiée, complétée et jointe à la pompe.

La pompe doit être nettoyée avant l’expédition!
S’il est possible que du liquide de dosage soit entré dans le corps de la pompe, l’indiquer de manière explicite dans la déclaration de sécurité!
Consulter le paragraphe 9.4 Rupture de la membrane.

Si les conditions mentionnées ci-dessus ne sont pas remplies, Grundfos peut refuser la maintenance de la pompe. Les frais d’expédition restent à la charge de l’expéditeur.
10. Tableau de recherche des pannes

<table>
<thead>
<tr>
<th>Panne</th>
<th>Cause</th>
<th>Remède</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le dosage s’est arrêté ou est trop faible.</td>
<td>Fuite ou blocage de soupapes.</td>
<td>Vérifier et nettoyer les soupapes.</td>
</tr>
<tr>
<td></td>
<td>Soupapes incorrectement installées.</td>
<td>Démonter et remonter les soupapes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vérifier que la flèche sur le boîtier de soupape est bien dans le sens du débit du liquide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vérifier que tous les joints toriques sont bien montés correctement.</td>
</tr>
<tr>
<td></td>
<td>Fuite ou blocage de la soupape d’aspiration et/ou du tuyau d’aspiration.</td>
<td>Nettoyer et étancher le tuyau d’aspiration.</td>
</tr>
<tr>
<td></td>
<td>Hauteur d’aspiration trop élevée.</td>
<td>Installer la pompe en une position plus basse.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installer un réservoir d’amorçage.</td>
</tr>
<tr>
<td></td>
<td>Viscosité trop forte.</td>
<td>Sélectionner la fonction anti-cavitation, voir section 6.15 Anti-cavitation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installer un tuyau de section transversale plus grande.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monter des soupapes à ressort.</td>
</tr>
<tr>
<td></td>
<td>La pompe dose de manière irrégulière.</td>
<td>Procéder au calibrage de la pompe, voir section 8. Calibrage.</td>
</tr>
<tr>
<td></td>
<td>Fuite ou blocage de soupapes.</td>
<td>Vérifier et nettoyer les soupapes.</td>
</tr>
<tr>
<td></td>
<td>Fuite par l’orifice de vidange.</td>
<td>Installer une nouvelle membrane.</td>
</tr>
<tr>
<td></td>
<td>Défauts de membrane fréquents.</td>
<td>Installer une nouvelle membrane et s’assurer qu’elle est convenablement fixée.</td>
</tr>
<tr>
<td></td>
<td>Sédiments dans la tête de dosage.</td>
<td>Nettoyer/rincer la tête de dosage.</td>
</tr>
</tbody>
</table>

11. Mise au rebut

Ce produit ainsi que toutes les pièces dont il est composé doivent être mis au rebut dans le respect de l'environnement. Utiliser votre service local de collecte des déchets. Dans le cas où un tel service de collecte des déchets n'existe pas ou ne peut pas traiter les matériaux utilisés dans le produit, prière de remettre le produit ou tout matériau dangereux à votre société ou atelier de maintenance Grundfos les plus proches.

Nous nous réservons tout droit de modifications.
Appendix

Dimensions

Dimensions are in inches (mm)

<table>
<thead>
<tr>
<th></th>
<th>DME 60</th>
<th>DME 150</th>
<th>DME 375</th>
<th>DME 940</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.93</td>
<td>6.93</td>
<td>9.37</td>
<td>9.37</td>
</tr>
<tr>
<td>B</td>
<td>7.8</td>
<td>7.8</td>
<td>8.58</td>
<td>8.58</td>
</tr>
<tr>
<td>C</td>
<td>13.03</td>
<td>13.58</td>
<td>18.54</td>
<td>19.53</td>
</tr>
<tr>
<td>D</td>
<td>11.18</td>
<td>11.18</td>
<td>14.33</td>
<td>14.33</td>
</tr>
<tr>
<td>E</td>
<td>7.09</td>
<td>7.09</td>
<td>9.06</td>
<td>9.06</td>
</tr>
<tr>
<td>F</td>
<td>17.48</td>
<td>17.48</td>
<td>21.26</td>
<td>21.22</td>
</tr>
<tr>
<td>G</td>
<td>1.61</td>
<td>1.10</td>
<td>1.22</td>
<td>0.24</td>
</tr>
<tr>
<td>H</td>
<td>2.91</td>
<td>2.91</td>
<td>3.74</td>
<td>3.74</td>
</tr>
<tr>
<td>I</td>
<td>7.36</td>
<td>7.36</td>
<td>9.69</td>
<td>9.69</td>
</tr>
</tbody>
</table>
Service kits, DME

<table>
<thead>
<tr>
<th>Pump size</th>
<th>Valves</th>
<th>Connectors</th>
<th>Materials Dosing head/ Gaskets/ Valves</th>
<th>Complete dosing head with NPT connectors (no hose clamp connectors incl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME 60</td>
<td>Standard</td>
<td>PVC 3/4” NPT</td>
<td>PP/EPDM/Ceramics</td>
<td>96549401</td>
</tr>
<tr>
<td></td>
<td>Spring loaded</td>
<td></td>
<td>PP/FKM/Ceramics</td>
<td>96549402</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Ceramics</td>
<td>96549403</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96549404</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/EPDM/Ceramics</td>
<td>96549405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/FKM/Ceramics</td>
<td>96549406</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Ceramics</td>
<td>96549407</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96549408</td>
</tr>
<tr>
<td>DME 150</td>
<td>Standard</td>
<td>PVC 3/4” NPT</td>
<td>PP/EPDM/Ceramics</td>
<td>96549409</td>
</tr>
<tr>
<td></td>
<td>Spring loaded</td>
<td></td>
<td>PP/FKM/Ceramics</td>
<td>96549431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Ceramics</td>
<td>96549432</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96549433</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/EPDM/Ceramics</td>
<td>96549434</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/FKM/Ceramics</td>
<td>96549435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Ceramics</td>
<td>96549436</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96549437</td>
</tr>
<tr>
<td>DME 375</td>
<td>Standard</td>
<td>PVC 1 1/4” NPT</td>
<td>PP/EPDM/Glass</td>
<td>96561182</td>
</tr>
<tr>
<td></td>
<td>Spring loaded</td>
<td></td>
<td>PP/FKM/Glass</td>
<td>96561183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Glass</td>
<td>96561184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96561185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/EPDM/Glass</td>
<td>96561186</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/FKM/Glass</td>
<td>96561187</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Glass</td>
<td>96561188</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96561189</td>
</tr>
<tr>
<td>DME 940</td>
<td>Standard</td>
<td>PVC 1 1/4” NPT</td>
<td>PP/EPDM/Glass</td>
<td>96561200</td>
</tr>
<tr>
<td></td>
<td>Spring loaded</td>
<td></td>
<td>PP/FKM/Glass</td>
<td>96561201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Glass</td>
<td>96561202</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96561203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/EPDM/Glass</td>
<td>96561204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PP/FKM/Glass</td>
<td>96561205</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVDF/FKM/Glass</td>
<td>96561206</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless steel/FKM/Stainless steel</td>
<td>96561207</td>
</tr>
</tbody>
</table>

| Front cover | 96520502 |

<table>
<thead>
<tr>
<th>Vent valve pos. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP/EPDM/Ceramics</td>
</tr>
<tr>
<td>PP/FKM/Ceramics</td>
</tr>
<tr>
<td>PVDF/KFM/Ceramics</td>
</tr>
<tr>
<td>SS/KFM/SS</td>
</tr>
</tbody>
</table>
Appendix

Safety declaration

Please copy, fill in and sign this sheet and attach it to the pump returned for service.

Note Fill in this document using english or german language.

Product type (nameplate)

Model number (nameplate)

Dosing medium

Fault description

Please make a circle around the damaged parts.
In the case of an electrical or functional fault, please mark the cabinet.

Please describe the error/cause of the error in brief.

☐ Dosing liquid has possibly entered the pump housing.
 The pump must not be connected to the power supply! Danger of explosion!

We hereby declare that the pump has been cleaned and is completely free from chemical, biological and radioactive substances.

Date and signature

Company stamp
CERTIFICATE OF CLEANLINESS
HEALTH AND SAFETY CLEARANCE FORM

Please copy, fill in, sign this form and attach it to the pump returned for service along with a return material authorization number.

<table>
<thead>
<tr>
<th>Product Description</th>
<th>RMA #</th>
<th>Quantity</th>
</tr>
</thead>
</table>

APPLICATION: The referenced product has been exposed to toxic or hazardous materials:

- [] YES
- [] NO

If yes, complete SECTION A. If no, continue to SECTION B.

SECTION A: TOXIC CLEARANCE
(To be completed if applied substances ARE hazardous)

Please specify all hazardous materials/substances used with the referenced product(s).

Provide the Material Safety Data Sheet for all materials referenced or list precautions to be taken when handling these substances. Also, provide any actions to be taken in the event of human contact with any liquid within the product (even after cleaning and/or flushing).

The product returned has been decontaminated, drained of liquid and is safe to handle. Provide decontamination method used.

<table>
<thead>
<tr>
<th>Initial/Date</th>
</tr>
</thead>
</table>

SECTION B: NON-TOXIC CLEARANCE
(To be completed if applied substances ARE NOT hazardous)

The product returned has not handled or been in contact with any toxic or hazardous substances. The product has been drained of liquid and is safe to handle.

<table>
<thead>
<tr>
<th>Initial/Date</th>
</tr>
</thead>
</table>

I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labeled, and are in all respects in proper condition for transport, by all modes, according to applicable international and national governmental regulations. Health and safety issues are clearly understood and will be given consideration during shipment. (A repair or inspection of product will only be undertaken when this certificate has been completed and authorized by a qualified member of staff employed by the returning company.)

COMPANY NAME

NAME
Position
Signature
Phone

A return material authorization number from Grundfos, along with a completed and signed copy of this form must accompany the returned product. It is the sender's responsibility to package, transport and complete the shipping documents regarding the nature of the product shipped. Irrespective of this, Grundfos reserves the right to reject the service order for other reasons. Grundfos will rely on this representation and will look to the customer for reimbursement of any and all costs, claims or damages incurred, including attorney's fees, if any representation is not correct. Radioactive products will not be accepted for repair.